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ESTIMATION OF THE NATURAL ROLL FREQUENCY
OF A SHIP IN A CONFUSED SEA

INTRODUCTION

Background
Motivation for this study derives from use of the natura: roll frequency as a measurs

of ship stability, a matter of concern to masiers, ship owners, and insurers of merchant
vessels. This use of the natural period of roll was proposed by Nerrby [1]. The classic
technique for measuring the natural roll period has been to excite the ship in roll bv ~me

means or another and to time the dzcaying oscillations in still water. At times such a
test is not feasible, or conditions of loading may be changed while the ship is under way,
requiring the stability to be judged at sea. :ere tne complexity increases because the roll
behavior is no longer deterministic, with the ship being driven in roll by a randorr- sea.
This point was raised in the discussion of Norrby’s paper where it was argued that the
rolling period used as a measure of stability shculd be the natural period of roll of the
ship, and not simply the per.od of encounter* with the sea. In spite of qualitative state-
ments made by a number of workers, and cited by Normrby in his reply, to the effect that
a ship normaily rolls in her natural period, a ship may be driven at the frequency of a
regular wave. Recognition of this led Vossers {2] to suggest that the roll period for judg-
ing stability be measured in a reiatively confused sea. However, this still is not sufficient
because the master of a ship may not always find himself in 2 confused sea at a time when
the stability must be checked. Nor will the general cenfusion of the sea always suffice
because the lack of any predominsnt swell or direction to the sea cannot ensure that there

will be energy in the sea capable of exciting the ship into resonance.

Since the roll period reflects the character of the sea as well as the resonance properies
of the ship and since the most definitive description of the sea is in terms of its spectrum,
it appears more useful to consider the roil spectrum in lieu of the roll history, the roil spe-
trum being the product of the power transfer function of the ship in the roll planz and the
appropriate specirum of the sea. The roll behavior of the ship at sea can then be described
in {erms of a natural roll frequency and the distribution of its estimates with, perhaps, the

sea state or local windspeed as a parameter. Until now this has not been done.

Statement of the Problem
The problem, then, is threefold: (a) to define an estimaior of the natural rol! frequency

of a ship in terms of the behavior observable in a confused sea; (b) o develop, using the

techniques of spectral analysis, an: algorithm for the optimum processing (optimum in the

*Definitions of terms commonly used in nava! architecture and aceanography are given in Appendix A.

Marnuscript submitied September 17,1976,
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sense of minimuimn variance in the estimates of the natural roli frequen~¥} of a finite lengic
of roli history: and {c} to find the sampiing distribution of the roll-frequency estimates
thus determined.

Reiated Research

A number of studies on ship mii rotion hzve been published since ihe appearante in
1861 of th> ciassic work of Froude 13|, who demonshated o impressively the principls
underlying the motijon of a ship in waves: inomentary equilibrium cobiains when the verfical
axis of the ship i normal to the wave cwifsre. Kriloff [4] madle the identificstion beiwean
the free (natural) and forced osciiiations of 3 ~hip and irdicated that the fregulaniy of the
sea would coniincally excite free oxcilistione. During the next 50 years Enorcvan:enis ~ee
made in the thecry, culminating in the thorough and systematic treatment by Wainblum
and St. Denis {5]. A major shortcoming remvined, however, i~ the sssumpiion of regular
waves until St. Denis and Pierson {6} added the siatistical description of the sea.

Tne zpplication of spectral angiysis to ship roll histories v as foreshadewad by the
work of Barber [7] anc Williams {B], sho found specirs for mdwviduas -ofl records. Barber,
who was endeavoring to deduce the freguency spectum «f the sea from # frequeacy znaiy-
sis of the rolling and pitching of the ship, noted thai the speed and directicn of travel of
the ship had no influence con the main pericd of the roli. A major contribution was made
hy Cartwright ard Rydill {9], who, using directional Ireguency specirs measined by 2 ship-
borre wave recorder, obtained excellent agreenient beotween predicted and measurad roll
spectra. The merit in Cartwright and Rydili’s paper, as pointed cut by Palmer in the dis-
cussion, lay in the authors’ having confinrmed the applicability for ship roll motion of the
principle of linear superposition. A review of the technigues of speciral analysisand a
demonstration of their application tc seakeeping was made by Marks [10]. Baitis and
Wermter {11} subsequently eniploved ihese techniques to obtain measurements of the
power spectra of ship motions.

Treaament of the natural roll period has be=n somewhat intuitive. A number of
workers {e.g., |2}, [8], [9]) have stated that the natural period predominaies for rolling.
Norrby {11 suggested that the natural roll period be determined as the average of a num-
ber of roiling tests where the ship is csased to roll in stil! water and the time to swing
from, say, starboard to port and back to starboard is noted by stopwatch. Histograms
for rol! period: were obtained by Langmaack [12], Williams [8], and Norrby and Engvall
[13]. The period was variously defined as the time inferval between alternate zero crossings,
twice the time between adjacent maxima and minima, and the time between successive minima.
With normal probability curves fitiad to the data, standard deviations on the order of 12 t0
23% of the mean were obtained by Norrby ant Engvall [13] for some 19 rolling tests,

The mean roll period at sea was chserved to be within 4.5% of its value for still water.

An empirical correfation between natural roll period and ship size is given by Williams
[8] for Eritish warships, assuming geometrical similarity of form and weight distribution.
A table of roll periods for Japanese merchantmen and warships is given by Tamiya and
Motora [14].

Wb il
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Approach

The problem of estimating the natural roll frequency from the spectral analysis of
the rcll history of a ship driven by a random sea is a special case in the larger area of
system identification. Briefly stated, the modeling, or identification, problem is to find
a mathematical description (model) of a dynamic system when a set of inputs and a set
of outputs are kncwn. The nature of the system may be completely unknown or, as in
the case reported here, because of knowledge of the physics governing the behavior of
the system, the form of the equations may be known and only the coefficients need be

determined.

The classical technique for solving this problem admits of several approaches:

1. The transfer function is plotted directly as the system is excited by a sinusoidal
input of variable frequency.

2. The response of the system to a unit impulse, or unit step function, is measured,
and the Fourier transform of the response or its derivative is taken to obtain the transfer

function.

3. The response of the system to an arbitrary input is measured, and its transform is
found and divided by the transform of the excitation to give the transfer function.

4. Sample spectra are computed from the response to white noise and are averaged
to obtain the squared modulus of the transfer function.

The first approach was taken in experiments using model tanks under carefully con-
trolled conditions by Baitis and Wermter [11]}. The third approach was taken by Cart-
wright and Rydill [9] aboard a ship at sea where simultaneous measurement: wcre made
of the ship’s roll and of the spectrum of the sea by a shipborne wave recorder.

Although the problem addressed in this study is eased somewhat by requiring that
only one coefficient be determined, the frequency f, for rasisted roll in still water
(assuming the coefficient k is known), it is rendered more difficul. because the excita-
tion is not known. The problem of system identification without knowledge of the
input, in even the limited sense treated here, does not appear to have received much
attention. The situation is far from hopeless, however, since our limited knowledge of the
input may be all that is required to obtain the limited information we are seeking about

the system.
One factor that helps considerably is the signal-like character of the roll history, which

will be assumed to be a noise-free measurement. (The quantization noise for the 12-bit
quantization of the output of the two-speed synchro yieids a signal-to-noise ratio of about

45 dB and is therefore assumed to be zero,)

The approach taken here is to assume that additive noise is zero, so that we may

write
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M(®;w) = IH(w)I?T(O;w)

where I'(®;w) is the spectrum of the roll process, H(w) is the transfer function of the
vessel in the roll plane, and I'(@;w) is the spectrum of the driving force. Here w is the
radian frequency of encounter of the vessel moving through the sea, {d’(t)} is the roll-
angle process, and {Q{t)} is the wave-normal angle process for those frequency compo-
nents normal to the roll axis. As will be shown later (see pp. 13 - 18), the spectrum of
the driving force is smooth relative to the transfer function, and hence the resonant fre-
quency f, will be biased by an amount depending on the slope of the driving force spec-
trum in the vicinity of resonance. An estimate of the natural roll frequency fw is then
obtained from a deterministic relation involving the estimated resonant frequency and
the coefficient of roll damping, which normally would have been obtained previously
from rolling tests in still water.

The problem of estimating these spectra from finite lengths of the roll history is
addressed in the section entitled “Spectral Analysis of Ship Roll History” (pp. 18 - 35).
Briefly, we take finite lengths of the roll history, apply a Fourier transform to obtain
a finite set of sample spectra, and then average across the set since the expectation of
the sample spectrum converges in the limit to the process spectrum as the sample length
tends to infinity. Hence we measure

m m
1 1
m Z Ci((b;w) ~ IH(W)Iz poe ? Ci(@;w)
i=1 =1

where C;(%;w) is the ith sample roll spectrum and C;(O;w) is the ith sample spectrum of
the driving force. The notation is that of Stilwell and Pilon [15] and distinguishes between
the first parameter in the argument as the variable being transformed and the second para-
meter, which is the independent variable, the frequency.

Since the roll history is a stochastic process, the sample roll spectrum is a random
variable and so, therefore, is the roll-frequency estimator fv" The questions that remain
to be answered then are the following:

1. Given a finite length of roll history, what is the algorithm for the optimum (mini-
mum variance) processing of the data?

2. What is the sampling distribution for the roll-frequency estimates?

3. What is the bias in the roll-frequency estimates due to the steepness in the spec-
trum of the driving-force in the vicinity of resonance and that due to the finiteness of
the sample lengths processed?

To answer the first question a parametric analysis is conducted in which the following
parameters are varied: the sample length T, the number m of spectra to be averaged, the
shape of the data window w(t), and the method of averaging. From this it is determined
that the optimum selection of parameters is to make the sample length T equal to the
decorrelation time of the roll record, to make the number m of spectra to be averaged as
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large as possible, to use a rectangular data window w(t), and to average normalized power
spectra cemputed from noncontiguous portions of the roll record.

To answer the seccnd question, we model the ship by a linear system with an input
of white noise. For resisted rolling in still water, the transfer function of the linear system
is that of the ship in the roll plane. For resisted rolling among waves, the transfer function
of the linear system is the product of the transfer function of the ship in the rcil plana
and the square root of the spectrum of the driving force, based on a theoretiral model of
the sea due to Pierson and Moskowitz [16]. A transformation is made from the probability
distribution of the spectral estimates for the simulated rell spectrum to the probability dis-
tribution of the estimates of the natural roll frequency. Complementing the theoretica! study
are measurements of the natural roll frequency made from 12 hr of roll data from the USS
Providence. Both the model and the measurements indicate that the estimates of the natural
roll frequency are normelly distributed.

To answer the third question, we assume that the variance in the spectral estimates is
zero, implying, in principle, that an infinite number of sample spectra are available for
averaging. For the case of simulated still-water rolling, bias arises from convolution of the
spectrum of the roll process with a spectral window of width inversely proportional to the
sample length. For simulated rolling among waves, bias arises from the arorementioned
convolution and from the steepness in the spectrum of the driving force in the vicinity of
resoriance. For both types of rolling, the bias in the roll-frequency estimator is tabulated
as a function of sample length. We isolate the bias due to the steepness in the spectrum
of the driving force in the vicinity of resonance by making both assumptions: zero variance
and infinite sample length. In this case bias in the estimator of the natural roll frequency
is tabulated as a function of wind velocity, which, for a fully developed sea, detcrmines
the shape of the spectrum of the driving force. These points are covered in detail on
pp. (30 - 39).

Contributions

Several contributions are made in this study to the problem of ship roll behavior.
These include the following:

1. An operative definition of the estimator of the natural roll frequency in terms of
the observable behavior of a ship in a confused sea

2. Identification of the sources of err.r in estimating the natural roll frequency from
such behavior

3. Formulation of an algorithm for the optimum processing of a finite length of roll
history (optimum in terms of minimum variance in the estimate of the natural roil frequency)

4, A derivation of the probability distribution for the estimates of the natural rell
frequency

- P —




WILSON G. REID

5. An assessment of the bias in the estirnate of the naturc’ roll frequency due botl
to finite sample lengths and to the steepness in the spectrum of the driving force in the
vicinity of resonance

6. Recognition that large-amplitude rolling derives not so much from proximity to
resonance, as has been supposed, but from some other cause (e.g., coherence of the wave
train driving the ship in roli)

7. A correlation between ship-size parameters and the natural roll frequency for a
variety of American naval vessels.

It was pointed out in the review of related research how a more intuitive definition
of the roll period (applied to an aperiodic function) led to distributions with large vari-
arces. The definition of the natural roll frequency is made more precise by assuming
the roll spectrum to be the product of the transfer function in the roll plane and the
appropriate spectrum of the sea that drives the ship in the roll plane as a linear, uncoupled
oscillator. This assumption has been shown to be valid over an important range of values
of roll angle and ship speed. The natural roll frequency, or the frequency of resisted roll
in still water, is defined in terms of the ro'l-damping coefficient and the resonant frequency,
or peak of the transfer function. The errors in estimating the natural roll frequency from
measurements of the frequency of the peak in the roll spectrum are attributable to (a)
errors in the determination of the roll-damping coefficient, (b) bias in the frequency of
Eﬁ the resonant peak because of the steepness in the spectrum of the driving force in the
vicinity of resonance, and (c) the variance and bias in th2 spectral estimates resulting
from processing finite lengths of the rol! history.

A parametric analysis showed that large-amplitude rolling, contrary to the opinion
expressed by Vossers [2] and Williams [8], derives not so much from proximity to reso-
nance as from other causes (possibly coeherence of the wave train in the sea). This was
discovered by a comparison of averaging techniques. It was argued that if large-amplitude
rolling were the result of proximity to resonance, then the heavier weighting given to
spectra from such portions of the record by averaging unnormalized power spectra would
give a smaller variance in the measurement than would be given by normalized power
spectra. It was found that this was not the case; averaging normalized power spectra
(thereby giving each portion of the record equal weight regardless of the amplitude of
the oscillations) led to the smaller variance.

An optimum processing scheme based on the decorrelation time of the roll history
being examined was deduced. Given a roll record of arbitrary length, the minimum vari-
ance in the measurement of the natural roll frequency is achieved by (a) subdividing the
record into m segments T seconds long, where T is the decorrelation time of the record
(the lag at the first minimum of the envelope of the autocorrelation function); (b) adding
zeros to achieve the desired fineness in frequency (an interpolation method); (¢) tmns-
| forming to obtain the power spectra; (d) normalizing the power spectra to unity total
power; (e) averaging the normalized power spectra; and (f) locating the global maxirium
in the magnitude of the resulting spectrum. The variance can be further reduced ir, instead
of subdividing a continuous record into m segments, the m segments are taken from non-
contiguous portions of the roll history over a longer period of time.
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Inciuded in the study is a comparison of the natural-roll-frequency cumulative distri-
bution functions for several values of the procossing parameters for the USS Prouidence
and a correlation with ship-size parameters of the measured natural roll frequencies for a

variety of American naval vessels,

Of theoretical interest is an investigation of the variance and bias in the estimate of
the resonant frequency of a linear system when the input is white noise. The variance
arises as & result of averaging the spectra from a finite number of realizations from the
ensemble of possible realizations of the process, whereas the bias is induced by transform-
ing a finite length of each of the infinite number of realizations to obtain the spectra to
be averaged. These two effects are studied separately: the variance by assuming a finite
number of realizations of infinite length (zero-bias case) and the bias by assuming an
intirnite number of rcaiizations of finite length (zero-variance case).

The effect of these considerations on the estimator of the natural roll frequency is
assessed by assuming two linear systems in tandem fed by white noise and having transfer
functions equivalent to (a) the square root of the Pierson-Moskowitz [16] wave-slope
spectrum that drives the ship in roll and (b) the transfer function of the ship in the roll
plane. In the absence of bias, the estimator of the natural roll frequency was found to
be normally distributed, a condition deriving from the high degree of symmetry in the
overall transfer function in the vicinity of resonance ané the vory rapid decrease in the
probability away from resonance. The bias, which is due to leakag> of power through
the sidelobes of the spectral window in the convolution between the spectral window and
the spectrum o1 the process (in this case the overall transfer function), accounts for a
downward shift in the estimate of the resonant frequency because of the particular asym-
metry in the transfer function (higher below resonance and lower above resonance).

To demonstrate the effects of bias from leakage for the case of short sample lengths
(a few cycles of the process} an analysis of the error in estimating the frequency of a trun.
cated sinusoid is included as Appendix A. This analysis emphasizes the effect of leakage
from the negative-frequency image, which can be substantial when the record to be trans-
formed is short and the spectrum has a few dominant “lines.”

Synopsis

The section that follows, “Roll Behavior of a Ship at Sea,”” discusses the roll behavior
of a ship at sea and the major assumptions required in this study. The equation of motion
in the roll plane (linear and uncoupled) and its solution are given. From this the natural
roll frequency, or frequency of resisted rolling in still water, is ideniified. Also identified
from the solution of the equation of motion is the transfer function. From this is found
the roll resonant frequency (the peak of the transfer function). A deterministic relation
is then found for the natural roll frequency in terms of the roll rescnant frequency and
the coefficient of roll damping. The coefficient of roll damping, its effect on the linearity
assumption, and a method for its measurement are next discussed. Finally, the spectrum
of the driving force is defined and expressed in terms of the one-dimensional frequency
spectium for the wave heights., This spectrum is the most easily measured and has been
modeled for fully developed seas by several workers, most recently by Pierson and Moskowitz
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[16]. Several examples of the spectrum of the driving force are given; when compared
with the squared modulus of the transfer function, they give some idea of the effect of
the former on the roll spectrum and on the estimate of the natural roll frequercy.

The next section, “Spectral Analysis of Ship Roll History,” treats the aspects of the
theory of spectral analysis that are necessary to an appreciation of the problems in deriving
the probability distribution for the estimates of the natural roll frequency. First a 2-hr
sample from the roll history of the USS Providence 1s reproduced and some basic assurap-
tions are discussed. Then the power spectrum of the roll process is defined as the Fourier
transform of the autocovariance function of the :o0ll stochastic process. Next discussed
is a method for estimating the roll spectrum wnen finite lengths of the roll history are
available for processing. The distributional properties of power-spectral estimators are
reviewed, and this information is used to derive the probability distribution for the esti-
mator of the natural roll frequency. The section concludes with a discussion of the bias
in the estimator of the natural roll freauency resulting from processing finite-length sam-
ples of the roll history and from the steepness in the spectrum of the driving force in the
vicinity of resonance.

The spectral analysis method is then applied to actuai roli histories from a variety of
Ameritan naval vessels. This section of the report begins with a summary of the conditions
under which the data were gathered and then discusses considerations in the selection of
the parameters for the processing of the data. It then reports the results of processing 12
hr of roll history from the USS Providence and shows that with appropriate processing
the spectral analysis of ship roll history may yield an estimate of the natural roll frequency
with very small variance. This discussion concludes with correlations of the natural-roll-
frequency estimates for a vari.iy of American naval vessels with various size parameters
(length, beam, draft, and dispiacement). These correlations are presented with a view to
using measurements of the natural roll frequency, if such measurements could be extracted
from radar data, as a means of classifying radar targets.

Appendix A, on the error in estimating the frequency of a truncated sinusoid by spec-

tral analysis, is iacluded to help explain the source of some of the variability in the esti-
mates of the natural . ll frequency based on short sample lengths.

ROLL BEHAVIOR OF A SHIP AT SEA
Equation of Motion

The equation of motion in the roll plane for a vessel experiencing resisted rolling in
regular, beam seast is given [17], with a slight change in notation, as

d2¢ d¢ 2.0 =,.2
2 9 i
—dt2 + m,x—-dl +t Wiy = Wy, sin wt (1)

1 Definitions of terms commonly used in naval architecture and oceanography are given in Appendix B.
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where
w, = the radian frequency Ior unresisted rolling in stiil water
= the radian fre- ency of the waves driving the ship in roll
0,, = the angle ¢ maximum wave slope

k = the coeffic.. .t of roll damping (differing from that given in the cited work
by a factor of 1)

¢ = the roll angle

The general solution to this linear, second-order differential equation with constant
coefficients, which can be verified by substitution, is given by

w15 T

X6, sind2nft - tan-1 2x( fite )
sin -
" 1-72/f2

+ae 2Kt gin [2af.(1 - k2)M2¢t + b] (2

‘ where @ and b are arbitrary constants to be determined from the initial conditions and
where the fraquencies f, and f are equal to w,/27 and w/27.

Natural Roll Frequency

The second term in Eq. (2) is the transient response consisting of a damped oscillation
at the natural frequency

fo = £(1 - k22, (3)

it is this frequency, the natural roll frequency for resisted rolling in still water, that is
observed in rolling tests in calm water alongside a wharf where a heave with a crane to a
bollard or in a harbor where a sharp maneuver of the rudder is sufficient to excite the
damped oscillations characterizing the transient response. If we take the time befween
alternate zero crossings as the period of the oscillation, the average of several such rolling
tests should be expecteu to give a measurement of the natural roll frequency with a reason-
ably small variance.

g S

Coefficient of Roll Damping

Because of the detrimental effects of rolling — such as structural stress, shipping of
o water, discomfort to passengers and crew, damage from shifting cargo, and in extreme
cases capsizing — the damping of roll motion has received considerable attention. The
interested reader is referred to Refs. 2, 5, 6, 17, and 18 for a more extensive treatment
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of the topic and for additional references. The intent here is simply to demonstrate what

may reasonably be taken as the coefficient of roll damping for the ships under study and
1o show that in the appropriate regime of ship speed or of roll angle the damping can be

assumed to be linear.

Briefly, roll damping is attributable to two phenomena: (a) wave generation, which
varies linearly with velocity; an:d (b) viscous damping, which varies as the square of the

velocity and arises from friction and from flow separation over bilge keels. Lalangas [19]

showed, from model studies, that damping was linear for roll angles not exceeding about
10 degrees. For the data analyzed on pp. 38 - 54, the USS Providence exhibited a maximum

roll angle of about 7.5 degrees. It was assumed, therefore, that roll damping was linear.
The value of the coefficient of roll damping is normally determined from rolling tests

in still water by comparing the exponent in the transient response, the second term in

Eq. (2), with the envelope of the damped oscillations. An alternative approach, described

by Cartwright and Rydill {9], is to use the envelope of the autocorrelation function, which,

if the spectrum of the driving force is uniform in the vicinity of resonance and if the rolling

15 linear, is wWiintical with wie envaispe of the decaying oscillations in still water. The equiva-

lence can by explained by noting that for the assumed conditions the roll spectrum is essen-
tially the square of the modulus of the transfer function scaled in amplitude by a constant
equal to the amplitude of the spectrum of the driving force. The autocurrelation function

of the roll process, which by the Wiener-Khintchine theorem [20,21] is the Fourier trans-

form of the roll spectrum, is therefore the autocorrelation function of the impulse response.

For positive arzuments the autocorrelation function of the impulse response is functionaliy
identical with the impulse response, differing only in amplitude and phase. Since the impulse

response is simply a member of the set of all possible transient responses, the equivalence

follows, Stated mathematically,
T(®3) = IH(HI2 T©)
~ C/H(f)|2

y(®u) ~ Ch(t) © h(t)

where C is the magnitude of ['(9;f) in the vicinity of resonance, y(P;u) is the autocorrelation
function of the roll process, h(t) is the impulse response of the ship in the roll plane (the
Fourier transform of the transfer function), = denotes approximate equality, and the symbol

© denotes autocorrelation. From the transient term in Eq. (2) we can write the impulse
h(t) = Ae® sin(bt + B) U(1)

response as
where A and B are the arbitrary constants appropriate to the impulse response, U(t) is the
unit step function, and for simplicity @ = 2nf,x and b = 2af,. (1 - «k2)12 " With this expres-

sion for the impulse response, the autocorrelation function for the roll process may be

written, for u > 0, as
10

Ry T—
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by~ C ( Ac el gin(bt + BYU(H)Ae ot * u) gin[b(t + u) + B) U(t + u) dt

-0

= CA2emau e~2at gin(bt + B) sin[{bt + B) + bu] dt
max(0,-u)

~ CA2¢mou j( e2at sin(bt + B) [sin(bt + B) cos bu + cos(bt + B) sin bu] dt
0

e-2at 5in2(bt + B) dt + sin bu j e-2at gin(bt + B)

r
=~ CAZ2e-ou l-cos bu I
0

0
cos(bt + B) dt
~ CAZe"a4(P cos bu + Q sin bu)

= Ee-%4 cos(bu - F)

where P and @ are equal to the integrals multiplying cos bu and sin bu and where E =
CA2 (P2 + Q2342 and F = tan™! (Q/P). This shows the equivalence of the exponent in the
autocorrelation function above and the exponent in the transient response,

Assuming for the moment that the above conditions are met, we find from examina-
tion of the autocorrelation function estimator in Fig. 1 that the envelope cf the decaying
oscillations decreases to el of its initial value by about 27 sec, which yields a roll-damping
coefficient equal to 0.081, assuming a frequeacy f, for unresisted roll in still water of
0.0731 Hz. This value differs from the value cited in Ref. 17 as normally obtaining —
that is. k = 0,032, The difference between these two values is probably attributable to a
broadening ¢f the resonant peak in the roll spectrum due to the steepness in the spectrum
of the driving force in the vicinity of resonance.

To check the validity of this hypothesis, we computed simulated roll spectra for
several windspeeds by taking the produci of the power transfer function and spectra of
the driving force derived from the Pierson-Moskowitz spectrum [16] (pp. 12 - 18). The
half-power bandwidth of the resonant peak in the roll spectrum was identical (to better
than 0.0001 Hz) with that of the power transfer function for windspeeds above 20 m/sec.
At 10 m/sec there was significant broadening of the resonant peak. At low windspeeds
the peak of the transfer function lies to the left of the peak in the spectrum of the driving force
where the rate of change of power with frequency is the greatest.

ey wo

11
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g
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LRG (SECONDS)

Fig. 1 — Autocorrelation-function estimator for 4 hr
of rol} data from the USS Providence (CLG-6), Feb-
ruagry 16, 1972

Roll Transfer Function

The transfer function, which gives the amplitude and phase of the response of the
vessel to sinusoidal driving functions of arbitrary frequency, can be deduced from the
steady-state term of Eq. (2) to be

A O N A
H(f) = [( --f-'?-> + 4K2-£2-J exp{t tan-1 (:ZK(;-:W)}}. (4)

The square of its modulus is plotted in Fig. 2. The modulus peaks at the roll resonant
frequency fo, which varies, as seen in the figure, with the coefficient of roll damping. For
the small values of the coefficient that normally obtain (i.e., for ¥ = 0.032), the resonant
frequency departs little from the natural roll frequency that we are endeavoring to estimate.

The relationship between the roll resonant frequency / and the natural roll frequency
f., (the frequency of resisted rolling in still water) can be found by maximizing the modulus
of Eq. (4). The result is

fo =1, (1 - 2¢2)12. (5)

Substitution of Eq. (5) into Eq. (3) for the frequency of unresisted rolling in still water
yields

/1 -2 \11'2 .
fo = fo\;’_ﬁ‘(’;} : (6)

For a nominal coefficient of roll damping of 0.032, the radical above equals 1.0005, so that
there is no appreciable difference between the natural roll frequency and the resonant frequency.

12
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Fig. 2 — Squared modulus of the transfer function in the roll plane vs
coefficient of damping

Under such conditions we may properly define the natural roll frequency as the frequency
at which the modulus of the transfer function peaks.

Spectrum of the Driving Force

It was previously pointed out that if the spectrum of the driving force is smooth rela-
tive to the transfer function, the globa! maximum in the roll spectrum will approximate
the roll resona~t frequency fy with a bias dependent on the steepness in the spectrum of
the driving force in ine vicinity of resonance. It is the purpose of this section to give an
expression for the spectrum of the driving force and to show that it can be assumed to be
smooth.

As shown by Longuet-Higgins et al. [22], the frequency specttum of the wave slope
along the x axis may be written
2n

T‘(a%;o) = I k2 cos? ¢ T'(nio,¥) dy (N
0

where

7 = the wave height

¢ = the radian frequency

k = the wave number

Y = the polar angle measured counterclockwise from the positive x axis

13
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The notation, due to Stilwell [15], shows explicitly that I" [(dn/dx);0] is the spectrum
of the wave slope dn/0x along the x axis and is a function of the frequency ¢. The
directional, wave-height, frequency spectrum I'(5:0,J) gives both the frequency ¢ and
direction of travel ¥ of the wave components making up the wave height n(t) at 2 given
point in the ocean.

From Eq. (1) the driving force for beam seas is seen to be induced by the angte 0{¢)
that the surface of the wave makes with the horizontal or, equivalently, that the wave
normal makes with the vertical. For oblique seas the angle 0(t) can be defined as

4
6(t) = tant =2 (8)
X

where the x axis is normal to the roll axis and to the local vertical. For small wave slopes
the arctangent can be approximated by its argument. Expressions for the mean square
slopes presented by Cox and Munk [23,24] indicate that, for wind velocities as high as

50 m/sec. « e rms value of the angle 8(t) for the larger gravily waves is only 16 degrees,
Hence we can write for the spectrum of the driving force in Eq. (1) in the case of oblique
seas

25
Ff:.0) = f k2 cos? ¢ TMmiov) dy. (9
0

The directional frequency spectrum ['(n;0,¥) is related to the one-dimensional frequency
spectrum I'{n:0) for the wave height n{f) by the expression

1 , ,
F(n0.9) = P F(ni0) K(o:9-vg) (10)

where ¥, is the wind direction and where the spreading fu'iction K(g:¢-y5) may, in gen-
eral, be a function of the frequency o. Kitaigorodskii [25] lists several spreading functions,
among which

8 P |
i 37 cos? (¢-¥p), 1o-dgl <;
K(o:¥-¥g) =< (11

| 0 otherwise
.

seams particularly simple but adequate for our purpnses. Substituting Eqgs. {10) and (11)
into Eq. (9) gives

B2 Vg tTi2
Fg:0) = —'g— Fi?}:ﬂ‘}f = cos® ¥ cos? (U-¥q) dY

-
-

A -t
Vg-ai2

a3 -, )
=— I'(n:0) A.yg) (12)
g2

14
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where A(yq) is equal to the integral in the line above. Use has been made of the dispersion
relation 02 =gk for waves in deep water, g being the acceleration due to gravity.

Because of the impact of adverse sea conditions on shipping, there have bean efforts
(see, for example, Refs. 16, 26, and 27) to characterize the sea by means of 2nery spectra
with wind velocity as a parameter. The spectral form given by Pierson and Moskowitz [16]

for a fully developed sea is
4

I'(n:0) = 5"% exp [-6(3) | (13)

-

where V is the windspeed, o is the radian frequen~y, and ¢ and § are dimensionless con-
stants equal to 0.0081 and 0.74, respectively. Use of the Pierson-Moskowitz spectrum in

Eq. (12) yields
4

0) ~ - exp l-g(E ; 1

F(@w0) ~ = exp [-6(2-) | Awo) (14)

where A(¥o; is a funcuion only of wind direction ¥3. This will be referred to as a Pierson-
Moskowitz wava-slope spectrum, shown in Fig. 3 for several windspeeds. The point tc be
noted i= the smoothness of the spectrum and the slope over the band of frequencies from
0.04 1o 0.12 Hz within which the natural roll frequency of most ships would Lo expected

to fall.

10
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Fig. 3 — Wave-slope spectra vs wind speed from Pierson-Moskowitz specirum
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one might properly ask what a short-term spectrum, based on the amount of shiproli data
that would likely be available for processing would look like. Figures 4 through 6 show
the wave-slope frequency spectrum for wave-height data from Argus Island, a platform off
the coast of Bermuda. Figure 4 is a typical spectrum corresponding 10 100 sec of data.
whereas Fig. 5 is an average of 12 such specira with rectangular weighting. Figure 6 is an
average of the same 12 spectra, but the data has been weighted by a data window corre-
sponding to sin*(xt/T), where T is the sample length. The reason for weightmg the data
is to achieve a spectral window with desirable characteristics. This point is discussed fur-
ther on pp. {2F - 30j.

POEN SPECTION, BONGITY
(GG THEN By

o v 18

'
i
IR S
— L

Fig. 4 — Slope specirum of wave-he'ght record from
Argus Idand for 109 e of dats

An obvious feature of the spectrum of Fig. 4 Is ils noiselike character over the band
of frequencies from 0.04 to 0.12 Hz, Thi: varnbility decresses with a ing, as shown
in Fig. 5. By choosing a spectral window with lower sidelobes than those of ihe sinc-
function speciral window emploved In Figs. 4 and 5, the spectrum is made smoother over
the range of interest.

for a ship moving with a velocity v through the sea the frequency componen

are doppler-shifted by an amount o(v/c) cos x to give 2 frequency of encounter
i or \ iz
w=s§§=—,@sx} {i5)
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Fig. 5 - Slope spectrum of wave-height record from
Argus Island resulting from averaging twelve 100-sec
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Fig. 6 — Slope spectrum of wave-height-record from
Argus Island resulting from averaging twelve 100-sec
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where ¢ = g/o is the wave celerity, v is the ship speed, and x is the angle between the ship
heading and the wave direction. The inverse transformaion from w to ¢ is not unique,
and the mathematics of the transformation to an encounter spectrum become quite tedious.
The reader interested in the details of the transformation is referred to Refs. 6 and 28.

Intuitively, we would expect that frequency components in the sea within a small
angle of the bow or stern of the ship would be shifted in frequency by rather large amounts,
whereas components coming from abeam would barely be shifted. Since it is the frequency
components from abeam that are most effectivé in exciting the ship in roll, it would appear
that the encounter spectrum for the driving force would not differ appreciably from that
given by Eq. (14).

Moreover, the low-frequency waves in the vicinity of resonance have a higher celerity
and are therefore shifted proportionately less in frequency. Also, for the ship motion
histories discussed in this report, the speed of the ship was rather low, being only 6 knots,
so that for these cases the doppler shift would be small. For a resonant frequency of 0.0730
Hz, the maximum doppler shift would be only 0.0015 Hz for waves at the frequency of roll
resonance coming from ahead or astern.

SPECTRAL ANALYSIS OF SHIP ROLL HISTORY
Roll Stochastic Process

Ship roll histories (e.g., Fig. 7) are time series — that is, random, or nondeterministic,
functions of time due to the randomness of the sea that drives the ship in roll, These his-
tories are characterized by the fact that future behavior cannot be predicted exactly from
knowiedge of the past. Two records from the same time series, though differing in detail,
may nevertheless show similarities in their statistical, or average, properties. Hence one
pictures a particular roll history as one realization of a stochastic process described by a
set of random variables {(P (t)} and the joint probability distribution associated with each
of the times t. Although the time series represented by the ship’s roll history is continuous,
the need to process data on a digital computer will require that they be sampled at discrete
times.

Some important assumptions are normally made in time-series analysis for the sake of
tractability of the mathematics. One of these assumptions is stationarity, which implies
that the process is in statistical equilibrium. Lack of stationarity, or nonstationarity, implies
that the statistical properties change with time. For example, the violence of the motion of
a ship at sea increases with the sea state, or in the case of roll the amplitude of the oscilla-
tions is greatest when the ship is on a heading that places it broadside to the predominant
direction of the sea. In these cases the variance of the roll angle is a function of time as
the ship alters course or as the weather changes, thercby affecting the sea state, The roll
history may also exhibit bias due to heeling of the ship under the influence of a strong
wind that is itself random. Hence the roll hsitory i« staticnary over limited times only.
Since these times are normally much longer than the duration of the records being processed,
the assumption of stationarity is made.

18
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Fig. 7 — Ship roll history from the USS Providence
(CLG-6), February 14, 1972

Another assumption frequently made is that the process is Gaussian. This assumption,
coupled with that of stationarity, implies that the process may be completely characterized
by the lower moments of its probability distributions, which include the mean and auto-
covariance function or, equivalently, the power spectrum. If the process is not Gaussian,
the lower moments are no longer the only relevant statistical properties; they are, however,
as pointed out by Blackman and Tukey [29], usually the most usefu: ones.

Power Spectrum of the Process

The autocovariarnce function of the rcll prucess, assuming stationarity of {d)( t)}, is defined
by

y(Pw) = E {[$(t) ~ p] [D(t + u) - u]} (16)
where E denotes expectation, u is the mean of the process, and u is the lag The notation
v(®;u), as pointed out previously, indicates that this is the autocovariance 7y for the roll
process dJ(t)} and is a function of the lag u.

This function has played a dominant role in the spectral analysis of stationary time

series. There have been several reasons for this, but chief among them has been its rela-
tionship to the power spectrum of the process I'(P;f) through the Fourier transform

19
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T(®;h = f y(bu)eiznfu dy,

Khintchine theorem.

Power-Spectral Estimators
Since the amount of roll data ¢(t) available from measurements will, in practice, be

limited to some finite interval (0,7}, the autocovariance function in Eqg. (16) must pe esii-

mated by a sample autocovariance function ¢{g:):

T-lul

%f [o(t) - P10t + iu)

c(pm) = |

O@{ui>T).
\

1 T
&p=7i£ w(t) dt.'

(17)

a relation attributed to Wiener {20] and Khintchine (21] and referred to as the Wiener-

~pldt, Wl <T
(18)

(19)

The estimator in Eq. (18) is asymptotically unbiased, which can be seen by taking

1 T-lul
Efc(d:u)] -'-‘E{-TT L

1 T-lul
=5 f) E{[(1) -

[@(t) - SH(t + ul) - B) dif

]

({t + W) - -‘5]} dt

(20)

where it has been assumed that the mean E{®$(1)] of the process is zero.}

1 Use of the capital P in Eq. (20) as opposed to the lowercase ¢ in Eq. {18) is made to draw attention
1o the fact that ¢($P;u) is a random variable, whereas c(yg,u) is but a single === -le function.
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The effect on the power spectrum of estimating the autocovariance function accounts
for much of the literature on the theory of spectral analysis. If in place of the autocovariance
function (Eq. (16)) we insert the sample autocovariance function (Eq. (18)), we obtain the
sample power spectrum

C(vif) = j c(psu)e-iznfu dy, (21)

The first moment of this estimator can be written, using Eq. (20), as

00

E[C(#:N] = j Y P5u) (1 - %‘:!)e“'z"f“ du. (22)

=00

It can be seen that in the limit, as the record length tends to infinity, the expectation tends
to the power spectrum of the process, that is,

F(®;) = lim E[C(P:N)]. (23)

T— oo

Here lies the major difference between the analysis of deterministic signals and sto-
chastic processes., Only for the case of a deterministic signal does the sample power spec-
trum converge as the length of the sample tends to infinity. For a stochastic process, it
is the ensemble average of the sample power spectrum that converges. A graphic example
of the nonconvergence of the sample spectrum for white noise is given by Jenkins and
Watts [30]. It is shown there how a single sample spectrum for white noise is not constant,
as one might suppose, but is characterized by peaks and nulls that are reduced only through
the averaging of many sample spectra.

The equivalence between the sample power-spectral estimator in Eq. (21) and the
periocogram of Schuster [31], whose distributional properties are reviewed in subsequent

sections, can be seen from the following development, which begins with the definition
of the periodogram:

Cly:h = -,11: IF {e(t)}12

T
p(E)ei2nft dg f P(n)ei2mM dy
0

T

*3 et

J

T
/ ol£) p(n)e- 271 (§-1) dgan
0
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T T
[ P(n) @n + u) dn e"i2174 dy
0

It

3]

)
=[

o

f c(pu)e-i2nfu gy,

T -ful
[ @(n) @in + lu]) dn e*21/u dy
0

N

which is the sample power-spectra estimator in Eq. (21). In the development § {\p( t)} is
the Fourier transform of the sample function ¢(¢), which vanishes outside the interval
(0,T). The asterisk denotes the complex conjugate. In iine 5 of the development the
transformation of variables was made corresponding to u = £ - 5. The limits of the inte-
gral in the last line were extended to *oo, realizing that the sample autocovariance function
¢(y;u) vanishes outside the interval (-T,T).

Distribution of Power-Spectral Estimators

To derive the distributional properties of the roll-frequerry estimator in subsequent
sections we will need the probability distributions for the.sam -~ power-spectral estimators.
These will be obtained by first considering the probability distrioutions for the sample
power-spectral estimators for a Gaussian white-noise process {Zk , R =0,£1,22 %3 ..., and
then synthesizing the sampled process ¢1>k} , kR =0,21,42%3 | by using the white-noise
process as the input to a linear filler with a transfer function satisfying the relation

! re,n
2A¢

IH(HI? =

q

where 02 is the variance of the white-noise process and At is the time interval between
adjacent measurements (i.e., between Z, and Z,,,).

The derivati~n with some modifications, follows that given by Jenkins and Watts [30].
We consider, then, a sample (£ = 0, 1, 2,...,N-1) from the Gaussian white-noise process
Z,‘,} ,k =0,:1,+2, ..., with zero mean, variance 02, and spacing Af. The sample power-
spectral estimator may be written in terms of the periodogram ast

CZLin = % (F{z,}12, k=0,1.2,..N-1 (24)
N-1
=1 -ignfkat]|2
NAt A( Z Zke
k=0 i

+Sampling of the process in time incurs periodicity in the frequency domain so that the frequency is
restricted to the unambiguous range (-1/2A4,1/2At), which will be implied fur all spectra computed from
sampled data,
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At i‘ ! 2 ! 27
v L z Z, cos 2nfkAt) + Z 2y, sin 2nfkAt %
k=0 k=0 -
At =
=7 [A%N + BA(N) (25)
where
N-1
A(f) = Z; cos 2nfRAL, (26)
k=0
N-1
B( =Z Z,, sin 2nfRAL. (27)
£=0
Since E[Z),] = 0, then E[A()] = E[B{(f})] = 0, and at the harmonic frequencies f,, = n/T =
nf(NAt), n = 0,1,2,... N-1:
Var[A(f,;)] = E[A%(f,)]
‘ N-1
2mnk
= g2 2
v} cos ( N )
k=0
N
2N, n= 0,—2-
= (28)
N N
2 = —
g 5 n=1.2, g 1.
Similarly,
(0, n= O,i;-
Var[B(f,)] =<y N (29)
2=, n=12,..,—=-1,
2 2
N-1 N1
2nnk 2rmi
Corlall A= > > ELZ) cos () cos (252)
k=0 =0
3 N-1
o2 (21mk o 21mk\
o cos | =) cos |\~ .
k=0
: =0, n¥Fm (30)
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Similarly,
Cov[B(f,),B(fy)] =0, n# m (31)
Cov[A(f,)),B(f,;)] = 0, all n,m. (32)

Since A(f,) and B(f,) are linear functions of Gaussian random wariables, they are themselves
distributed normally. In addition, they are independent, which foliows from their being
uncorrelated, normal, random variables. Therefore

A%f)  242(F,)
VarlA(f,)] ~ Ng2

> = 2
X1 (33)
BX(f,)  2B%(f,)
Var[B(f,)] N2

Since these random variables are independent and distributed as x%, their sum

7

20(Zihy)

X (34)
o2At 2

_2_axg) + B2 =
Nog2

is distributed as chi squared with two degrees of freedom except for n = 0, N/2, for which
B(f,) = 0, so that the sum is chi squared with one degree of freedom.

Since the expectation and variance of a chi-squared random variable with v degrees of
freedom are v and 2v, respectively, we can solve for the expectation and variance of the sam-
ple power-spectral estimator as follow:

[2C(Zk;fn):!
E{f——1=2,
o2At

E{C(Zy:f,)] = 024t = T(Z;;f,), (351
2C(Zy,;f,
Var[—-——k;—n-)-]‘—‘ 4,
024t
Var[C(Z,,:f,)] = 04 (A)2 = T2 (Z,.31,) (36)

where it will be remembered that I'(Z,;f) is the power spectrum of the process. This shows,
as Slutsky [32] stated, that the variance of the sample power-spectral estimator is a constant,
independent of the length N, and that, therefore, there is no convergence of the sample
power spectrum to the power spectrum of the process as N tends to infinity. Although

the derivation above assumed that the noise was Gaussian, the resfriction is not severe since
the central limit theorem should render the distribution of the random variables A(f) and
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B(f) nearly Gaussian and that of the power-spectral estimator nearly chi squared regardless
of the distribution of the process.
The analysis or the white-noise process can be extended to the case of white noise as
the input to a linear filter, where, by a suitable choice of the transfer function, the power

spectrum of any stochastic process can be reproduced. The general relation between the
input and output power spectra for a linear system may be written in this case as

D& = iHNIZT(Z,:0 (37)
where for white noise I'(Z;,;f) = 02At.

The sample power spectrum for a finite segment of the stochastic process may be
written
k-(N 12
3 {rect [:—-—-——(N /2):}<I>kH

2
F {rect [k_(;;, /2)} {h * Zk]}! (38)

R
F{n}¥ {rect[k }zk | ]

~ H(HI2 %—‘?{rect[k-(le)] }l

= H(f)I2 C(Zy: (40)

where, because we know the distribution of the sample power-spectral estimator C(Z, f)
for the white-noise process, we may write

E[C($,:N] = IH(NI2 T(Z i) = T(Ppi)- (41)

C((bk N =

|

e 1

e
Q2
'~3|b—-

a

=

Similarly, as seen from Eq. (35), C(Z;;f) is an unbiased estimator.
Var[C(®,,:N] = T2(d, . (42)

<enkins and Watts [30] point out that the approximation in going from Eq. (38) to
Eq. (39) requires that the impulse response h(t) tend to zero in a time short compared
1 with the length T of the sample. The reason for this can, perhaps, be better appreciated
by a comparison of the spectra in each case. Evaluating the transform within the modulus
signs for Eq. (38) gives

T sine(Te 7T/ * [H(NZ(f)) (43)
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and for Eq. (39),
H(f)T sinc(Tf)e 7Tl * Z(f)] (44)

where H(f) and Z(f) are the Fourier transforms of h(t) and {Zk} for k = 0,1,2, ..., N-1.

In Eq. (43) we see that the smoothing and consequent leakage through the sidelobes of

the sinc-function spectral window corresponding tc the rect-function data window is applied
to the transfer function as well as to the noise, whereas in Eq. (44) the same effects are
applied only to the noise, and not to the transfer functicn. From this formulation it is
easy to see that the spectral window would have to be narrow (large sample length T)
relative to the resonant bandwidth of the transfer function in order for the approximation

to be close.

Stability of Power-Spectral Estimators

The defect in the periodogram relating to its nonconvergence for increasing sample
size was known to Schuster [31], who commented that, were it not for the prohibitive
computational effort required, one should follow the practice, common in optics, of
averaging the successive periodograms obtaine” by varying continuously the starting time
of the sample. *“Smoothing’’ of ihe periodogram by averaging over neighboring values of
frequency was suggested by Danie!l {33]. Kendall {34] then observed that this smoothing
was tantamount to truncating the autocorrelation function, whose Fourier transform had
been noted by Wiener [20] to be equivalent to the periodogram. A similar result was
arrived at independently by Bartlett {35], who noticed that averaging periodograms
obtained from contiguous lengths of series was approximately equivalent to truncating
the correlogram (autocorrelation function} at a point represented by the length of the

subseries.

To appreciate the reduction in the variance (increase in stability) achieved by averaging
sample spectrz, we need only consider that the distribution of the sample power-spectral
estimators for Gaussian white noise derived in the preceding section was chi squared with
two degrees of freedom except for n = 0, N/2, where the estimators were disiributed as
chi squared with one degree of freedom. By the reproductive property of chi-squared
random variables with v degrees of freedom, the distribution of the sum of m such inde-
pendent random variables is also chi squared but with vm degrees of freedom. Therefore,

if we define
m
- 1 .
=1

where E(Zk:f,,) is the smoothed sample power-spectral estimator obtained by averaging m
sample power-spectral estimators and where C(Z;;f,) is the sample power-spectral estimator
computed from the ith nonoverlapping sample of the process {Z,} , we may wiite
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I
e

L

Xgm9 n= 1’21 --13— 1
ZMC(Zk:fn) _
02 At N
X 7= 0,5

The variance of the smoothed power-spectral estimate is then
F2mC(2:1,)
—|=4m

\"a.r%
L oA

- san2 T2Z.:1)
Var[CiZy:f,)] = L& Tk (46)
m m

which shows that the variance of the smoothed sample power-spectral estimators for Gaussian
white noise has decreased by a factor of 1/m by averaging m sample spectra.

Use of the above results and Eq. (40) allows us to derive an expression for the variance
of the smoothed sample power-spectral estimator for an arbitrary stochastic process where
the sample lengih T is large. Taking the m-fold average of both sides of Eq. (40), we obtain

C(dy ) = IH(f)I12C(Zy3 ),
2mC(Py:f,)  2mC(Z:f,)
. —— = — = X5m» (47)
H(M)1E 02 At a2At

™

2mC (921, |
—_— = 4m,

LiH(7,)12 024t ]
, IH(f)1 (A2 0%
Var(C(@yify)] > ——

_HE)E THZ 6
- m

Var

- rz(':’k:f,,) 8
D (48)

Given a record of finite lengu., *his smoothing procedure suggests that it be subdivided
into m segments each T seconds long. The larger m is, the smaller the variance will be. How-
ever, as m increases, T decreases, resulting in a larger bias B(f), given by
(49)

B() = E[C($:N] - T(d::N.
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Bias of Power-Spectral Estimators

To understand the source of the bias and its relationship to the variance of the smoothed
sample power-spectral estimators for a record of given length that has been partitioned into

m segments, we will redefine the sample autocovariance function given by Eq. (18).

For

clarity continuous time functions will be assumed since discreteness in time implies perio-
dicity in the spectrum, which we wish, for the present, to avoid. For continuous time the

sample autocovariance function is given by Eg. (18) as

1 T-{ui
c(giu) = ',;f (1) - g1t + ul) ~ @] dt.
0

if we suitably restrict the factors in the integrand with rectangle functions

's

T
(l\ _ 1: ;f= 2
rect -T =
Lﬁ, otherwise,

we can write the limits of the integral as extending from -oo to +oo:

o
o) =~ E_-{T__i%’é t - (T/2) + iui}
elp:iu) T f tf 7 {.;xf}- ec{ 7 _f

-0

) - ¢} dt.

X [t +

Taking the expectation of both sides and assuming a process with zero mean E[®] = . =

we obtain

it-(T/2) + ?ui'j

gf— g
E(c{¢;u)l=%f ii {TZ} T

X E{{9(1) = S1{P(¢ + lu)) - F)) dt

_1 [0 T-@m) (-2,
T f recig T .Ered._ = }T@,a} dt
1 [T Ty ft- (7’/2; + ,ui} _
T | recih T } !— dt v(P;u),
7 i!l 'g
= (1 - _—i T(¢ u}:

(50}

(52)
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which is Eq. (20). With this formulation we recognize that the use of the rectangular date
window to truncate the time series {'19{ 2)} in Eq. {51) is equivalent to the use of the tri-
angular lag window tc weight the autocovariance function of the process. We note also
from Eq. (52) that the triangular lag window results from the autocor 2lation, or self-
convolution {since the two operations are identicai for even functionsj, of the rectangular
data window. This suggests, with some malice aforethougnt, that we weight the data with
a window appropriate to the nature of the process and of the information being sought.
If, then, we define as the sample autocovariance function (assuming zero mean for the

process}
o) = & f w[F T2 oy [ TD > W0 gy ar (53)
T J, T | L T

where the data window wi{{) has the properties

w(0) = 1, (542)

w(t) = w(-1), (54b)

w(t) = 0, it >, (54c)
we can derive the expression for the expectaiion of the smoothed sample power-spectral

estimator:

—_—
H

H

N S au
Eflc(P;:u)] = EI'—”— 7 ck(é.u)é
L k=1 J

m P - _
E ] Tt - (Tj2) - kT} Tt -(T/2) - kT + jui}
k=1 - - "

o | ot

1
m T T i

X E[®(t - kT)®(c ~ kT + lul)] dt

m = -3
NPT | Z 1 t-(T/2) - kT] [ -(T/2) - >T +
—‘7('!',3}; T f W{: T Jiﬁé T dt.
k=1 -

On Fourier transforming both sides, we obtain
i ]

F{E@@m1} = F o (b5u)

k=1 J

]
>
j

Ei?ié{(b;u)}} =T(d:;NH* 1 ; TiW(Tf)e 3% T2
) m 2y
k=2

B b by 1y
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Fig. 8 — Construction showing transformation of
probability density function from spectral estimate
to roll-frequency estimate

hy

where [ is the gamma function and U(x) is the ynit step function. For v = 2m, corre-
sponding to the averaging of m such independent random variables,

Px(x) = xm-le=x2[J(x).

2mT(m)

For y = ax,

winy

py(y) = iai. px(%)

= ..__.]:___ ym -lg-y/2a U(y). (56)
am 2m(m)

If we set |H(f,)|202At = I'(®,:f,), we have, from Fq. (47) for the above transformation

-_2m
(P f)

x E(Qk;fn) = xgm,
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v = C(Py:fy),

a =
2m

Substitution of these equations into Eq. (56) yields}
mm mé,
Polky) = ————— 1 ex [, U, (57)
n\4sn l‘m(d’k;fn)l‘(m) n i (q, f ) n

In Fig. 8 there is plotted above the spectrum with the superimposed probability density
function of Eq. (57) the probability (a discrete density function) that a given independent
spectral estimate at frequency f; is the global maximum in the smoothed power spectrum
and therefore interpretable as the peak of the transfer function. The probability that
C(@k f;) is the global maximum in the smoothed sample power spectrum may be written

" P{t; = max[§;,j=1,2,...,N]}

oo £ & ,
= [ dél [ [ . [ p1,2,.,.,N(51 )EZy---vgN)
0 c 0 0

X df, dEy ... dE; | dEjeq ... diy. (58)

. Since the Ej terms constitute independent spectral estimates for the assumed conditions,

we may write

Plt; = mux([§), j=1.2, ... ,N]}

had N
= f dg; pi(&) H / dgjpj(sj (59)
1

0

where the probability density functions are given by Eq. (57). If we make use of the integral
feamula [36]

m
xMed* dx = eox (-1) mix™ " (60)
(m-r)lar+V’
r=0
the integrals in Eq. (59) can be expressed as a finite sum:
£ mE; m
[ dg; pj(k)) = 1 ~ exp {- mmj! Z ApiE " (61)
° " n=1

+ For simplicity of notation we set £, = (_J(‘b,,;f,, ).
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where the summation coefficient A, ; is given by
m m-n i

A, ;= *
! {E;r(q’!éf;)j I'(m -n+ 1

(62)

The probability density function for the roll-frequency estimator . the frequency of
the peak in the smoothed sample power spectrum, 2y then be written

N

. . < N £
P¢(f¢)=z 5(7, - 1) f dg;p e [ f d, (%)) (63)
=1 0 =1
11

where the probability density functions are given by Eq. (57).

The integral in Eq. (63) was evaluated for several values of m, the number of spectra
averaged. The envelope of the resulting discrete distributions is plotted in Fig. 9. For the
purpose of the plot, the frequency was transformed to fractional error € according to

uf,’g _i-\g
I

€

where f, is the natural roll frequency and f is the estimate. The slight asymmetry of the
envelopes near the peak is due to the coarseness of the frequency intervals taken, m this
case 0.0002 Hz, relative to the spread in the distribution.
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Fig. 9 — Probability density functions for the frac-
tional error in the estimated resonant frequency
for simulated still-water rolling with number of
spectra averaged
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Several aspects of the behavior ot these distributions are worthy of note. First, the
reduction 1 the variance due to averaging is seen to be less than 1/m even though, as
noted from Eq. (48), the viuiance in the spectral estimates themselves is reduced by 1/m.
If the standard deviatizn for m = 1 were taken as the deviation of the population, the
standard deviation for m = 16 would be 0.0039 rather than 0.0081.

Second, the probability density functions appear to be Gaussian, which is confirmed
by plotting their cumulative distribution functions on normal probability paper, as shown
it Fig. 10 for m = 8. This is interesting because a moment’s reflection about the nature
of the transformation in Fig. 8 appears to indicate that the resulting probability density
function would be dependeni on ithe shope of the spectrum I'(P,;f). To check the shape
dependence, we made the transformation for m = 1 and a roll-damping coefficinet x =
0.256. The spectrum (transfer function) for this case is seen from Fig. 2 to be somewhat
more asymmetrical. The usymmetry in this case was reflected in the tails of the probauility
density function, which decreased at unequal rates, the one on the left dying out more
slowly. However, due apparently to the high degree of symmetry in the resonant peak in
the vicinity of resonance and the fact that most of the probability is contributed by this
vicinity, the resulting distribution is, to first order, symmetrical.
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=

£t ®
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}
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FRRCTIONRL ERROR
(PERCENRT)

Fig. 10 — Cumulative distribution function for
the fractional error in the estimated resonant
frequency for simulated still-water rolling

The transfer function was next multiplied by the Pierson-Moskowitz wave-slope spectra
[16] for windspeeds in excess of 20 m/sec to obtain simulated roll spectra, and the above
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fransformation of probability density functions was made. Although the simulated spectra
differ for rolling in still water and rolling in Pierson-Moskowitz seas, identical results were
obtained; this appears to be explained by the argument above regarding the high degree
of symmetry in the resonant peak.

Bias of the Roll-Frequency Estimator

In the case at hand, where we are seeking limited information about the power spec-
trum and hence the system — that is, the position of the peak of the transfer function —
we are not entirely without hope in assessing the effect of bias due to a finite sample
length. For example, if the peak in the power spectrum were symmetrical and it were
possible to eliminate any other asymmetry, then the bandwidth and sidelobe structure of
the spectral window, though contributing to bias in the measurement of power at a par-
ticular frequency, would leave the position of the peak unaltered in the sample power
spectrum.

We are fortunate in the case of the roll spectrum since, as « xamination of Fig. 2 will
reveal, there is considerable symmetry in the transfer function. It would be of interest to
examine the effect of the convolution in Eq. (55), which is the cause of bias in the sample
power-spectral estimator, on the position of the single spectral peak, assuming for the roll
spectrum the squared modulus of the transfer function in Eq. (4). Extension of the analy-
sis to a ship at sea could be made by assuming the roll spectrum to be tke product of the
squared modulus of the transfer function in Eq. (4) and the wave-slope frequency spectrum
in Eq. (14) obtained from the Pierson-Moskowitz [16] spectrum in Eq. (13).

We will examine first the case of white noise applied to the input of a linear filter
whose transfer function is that given by Eq. (4). Assuming a noise process having unit
variance, we may write the power spectrum of the output of the filter as

e /_,:2 2 0 12\-1
Cebwf )’{[1"\/’,)] ~ a2 (1} ¢4

where k = 0.032 Hz and f, = 0.0731 Hz, ~orresponding to the values assumed for the USS
Providence. If we assume that the output of the filter is truncated to a length T by a data
window, Eq. (55) becomses

e _ 2 AW .
EI(@:0)] = 1-(—-)] + act(L) Y Twacrn. (65)
L\ f}

r r

We wish to estimate the frequency of the resonant peak in the spectrum — the frequency
that, in the absence of bias, we saw from Eq. (5) to be equal to 0.0730 Hz and that,
for the small values of the roll-damping coefficient that normally obtain, may be taken as
the roll-frequency estimator f@. The results of the convolution in Eq. (65) are summarized
in Table 1, which shows for various truncation lengths T the roll-frequency estimator
f.,(T) and the bias B(T} in the estimate, both as functions of the truncation length. For
this case of a driving function with a uniform spectrum, the bias is seen to vanish for
truncation lengths greater than 100 sec, which is of the order of the decorrelation time
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Table 1 -- Bias of Roll-Frequency
Estimator Resulting From Finite
Sample Length for Simulated
Rolling in Still Water

T TAT) B(T)*
{sec) (Hz) {Hz)
10 0.0718 -0.0012
20 0.0724 -0.0006
30 0.0728 -0.0002
40 0.0728 -0.0002
50 0.0729 -0.0001
60 0.0729 -0.0001
70 0.0729 -0.0001
80 0.0729 -0.0001
90 0.0729 -0.0001
100 0.0730 -0.0000

*B(T) = f(T) - 1,

of the roll process. The roll-frequency estimator is shifted down in frequency because of
the particular asymmetry in the tails of the transfer function; that is to say, more power
leaks in through the sidelobes of the spectral window from the transfer function below
resonance and irom ihs-nogative-frequency image (the mirror image of the curves in Fig. 2)
than from the transfer function above resonman.c, where the power drops off more rapidly.

In Table 2 the power transfer function has been multiplied by wave-slope spectra
derived { _m Pierson-Moskowitz spectra [16] for windspeeds from 20 to 50 m/sec. The
bias is seen to be larger and shifted even more than before to lower values. There are
two causes for the increased bias, Firsi, there is increased leakage through the sidelobes
of the spectral window. Second, there is a shift in the position of the peak that resuiis
from the steepness in the spectrum of the driving force in the vicinity of resonance. Bias
resulting from the latter cause was investigated: the results are summarized in Table 3,
which shows the position of the resonant peak in the simulated roll spectrum when the
spectral window is the delta function, or identity operaicy under convuiution. Compari-
son of Table 3 and Fig. 2 shows that the resonant frequency is shifted toward the peak
of the wave-slope spectrum, as one would expeci. Also to be ncted is the small contri-
bution to the bias from this cause, the major contributor being leakage through the side-
lobes cf the spectral window.

The resonant peak of the transfer function is completely obliterated as a result of
the steepness of the wave-slope spectrum in the vicinicy of resonance of windspeeds lower
than about 15 m/sec. This seems incongruous with the results discussed in the next seg-
tion, where well-defined resonant peaks cbtaines for windspeeds in this range. The Pierson-
Moskowitz spectra for low windspeeds have little energy at the frequencies corresponding
to roll resonance for most large ships. However, the oceans are normally characterized
by the presence of swell at these frequencies — swell that, as Kinsman [37] pointed out,
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Table 2 ~ Bias of Roll-Frequency
Estimator Resulting From Finite
Sample Length for Simulated
Rolling Among Waves* at a

Windspeed of 20 to 50 m/sec
T fo(T) B(Dyt

(sec) (flz) (Hz)
10 0.0681 -0.0049
20 0.0697 -0.0033
30 0.0715 -0.0015
40 0.0719 -0.0011
50 0.0721 -0.0009
60 0.0723 -0.0007
70 0.0724 -0.0006
80 0.0725 -0.0005
90 0.0725 -0.0005

100 0.0726 -0.0004
oo $

*Pierson-Moskowitz spectrum [16].

1B(T) = 1,(T) -
$See Table 3.

Table 3 — Bias of Roll-Frequency
Estimator Resulting From Steepness
of Driving-Force Spectrum#*

14 fo(V) B(V)
(m/sec) (z) (H) |
5 Resonant peak obliterated
10 Resonant peak obliterated
15 0.0733 0.0003
20 0.0731 0.0001
25 0.0731 0.0001
30 0.0730 0.0000
35 0.0730 0.0000
40 0.0730 0.0060
45 0.0730 0.0000
50 0.0730 0.0000

*Derived from Pierson-Moskowitz spectrum [16].
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traveis wius very Lttle sttennation from the storm centers where 1t 1s generated to distant
points on the ocean’s surface. In deducing the form o1 e Ticiaea Mozkowit? snectrum,
the authors first had to cull our all those “... ieight spectra “contaminated™ by swell,

APPLICATION OF METHOD TO SHIP ROLL HISTORY
Summary of Experimental Conditions

The ship motion histories treated in this study, with but one exception. were b iined
from the Airborne Radar Branch of the Naval Research Laboratory. The ¢xeption is *he
motion history of the USS John F. Kennedy (CVA-67) which the author assistea vy F.
Fine, obtained with instrumentation on loan from the Airborne Radar Branch. Since, in
general, the data was obtained for some other study, there was no control over the exper:-

mental conditions.

The instrumentation used to record the data, described in detail by Kremer et al. [38],
was connected to the appropriate synchro transmiters (roll, pitch, and heading), which in
turn were connected to the ship gyrocompass or fire-control stable element. Data was
sampled at a rate of 10 Hz and quantized to 12 bits. The daia was recorded in computer-
compatible format as two 48-bit words per frame with 1200 frames per record. The format
is shown diagrammatically in Fig. 11. The frame marker used to identify the beginning of
the frame was to allow unscrambling of the data in those cases where the recorder lost
synchronism with the synchro-to-digital converters.

Fig. 11 — Data format for recurding ship motion
histories on magnetic tape

The ships whose roll histories were analyzed in this study are listed in Tabie 4 with their
1ze parameters. Measurements were made both en route and in the appropriate operating

areas off the coast of southern California and off Norfolk, Virginia. In most cases, the ships
executed a box pattern on courses 000, 090, 180, and 270 degrees True and on courses 045,
135, 225, and 315 degrees True. The ship steamed for about 15 min on each leg in turn
for a total of 4 hr, thereby executing each leg twice. Table 5 summarizes the conditions
of wind and sea that obtained during the recording of the 12-hr roll history for the USS
Providence that is analyzed in detail in this study.
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Table 4 — Summary of Ship-Size Parameters*

e Hull Length Beamt Draft Displacementi;
Ship Name Type Number (ff; ¥ (ft) (ft) .(tons)
Kyes Destroyer DD-787 391 41 19 3.500
Shelton Destroyer DD-790 391 41 19 3,500
Buckley Destroyer DD-808 391 41 19 3,500
Hanson Destroyer DD-832 3 41 19 3,500
Parks Destroyer DD-884 391 41 19 3,500
Hull Destroyer DD-945 418 45 20 4,050
Towers Guided missile destroyer DLG-9 432 47 20 4,500
McCain Guided missile destroyer DDG-36 493 50 21 5,200
Dahlgren Guided missile frigate DLG-12 513 53 25 5,800
Thomaston | Dock landing ship 1LSD-28 510 34 19 11,27¢C
Coronado Amphibious transport dock LPD-11 570 84 23 16,900
Providence Guided missile light cruiser CLG-6 610 66 25 14,600
Kennedy Attack aircraft carrier CVA-67 1048 130 36 87.000
*Dats from Ref. 39. Conversion factors: 1 ft = 0.3048 m; 1 ton = 907.18474 kg.
tLength measurements rounded to the nearest foot,

AL waterline.
AL full load.
Table 5 — Synoptic Observations During Test of USS Providence*
Wind Swell
Time Direction Force Direction Period | Height
(degrees True) (m/sec) (degrees True) (sec) {m)
1000+ 157 7.7 145 3 09
1100 170 98 145 3 02
1200 000 41 190 4 1.2
1300 000 4.1 275 4 1.2
1400 000 4.1 2890 4 1.2
1500 052 2.6 31 5 1.5
1600 089 3.1 310 6 1.8
1700 128 2.6 295 6 1.8
1800 023 2.1 295 6 1.8
0300% 292 4.0 90 4 0.6
0400 292 4.6 290 4 0.6
0500 300 4.6 080 4 0.6
0600 329 46 90 4 0.6
0700 295 5.1 090 4 0.6

*Ship position 32.7°N, 118.4°w.
+February 14, 1972.
$February 16, 1972.
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Choosing Parameters for the Analysis
In the analysis of ship motion histories we are free to vary the following parameters:
1. The sample length T
2. The sample rate (Af)!
3. The frequency spacing Af
4. The shape of the data window wl({)

5. The number m of spectra that are averaged in determining a single estimate of
the roll frequency

6. The total length mT of data entering into a determination of a single estimaic
of the roli frequency

7. The method of averaging.

The choice of a sample rate is guided by the bandwidth of the data to be analyvzed.
The classic sampling theorem of Oliver, Pierce, and Shannon [40] requires that a low-pass
signal be sampled at a rate at least twice that of the highest frequency present in order
to be able to recover the original signal from the samples. To sample at a lower rate would
result in distortion of the spectrum as a result of aliasing. In the present case, since we
are looking for behavior at a very low frequency, some aliasing in the spectrum couid be
toierated 50 long as the spectrum roll off were steep enough. Figure 12 shows the roll
spectrum for 4 hr of data from the USS Providence. The spectrum was obtained by
averaging 12 spectra (m = 12}, each representing 20 min of data (T = 1200 sec). The
power density is dewn by 30 dB at 0.15 Hz, which implies that a sample rate as low as 0.25
Hz might have been used.

The choice of the frequency spaciug Af is dictated by the fireness desired in the
measurement of the roll frequency and the variance in its distribution. The frequency
spacing is a simple function of the sample rate £, which is equal 1o { Ayl and the size
n of the transform. The fineness in frequency can be obtained by adding zeros to the
data to fill out the input array ot the transform. We have, then, for the frequency spacing

I

Af =

=

Table 6 lists values of the frequency spacing Af as a funciion of some of the sample rates
avaiiable on the basis of a maximum sample rate of 10 Hz. The use of a low sample rate
eases the requirement on the size of the transform for a given frequency spacing. A lower
bound on the sample rate and therefore on the size of the transform would be of ecpecial
interest in the design of a fast-Fourier-transform device for use aboard a vessel in measuring
roll frequency. In the laboratory it would represent a saving in computer time for cases

in which large amounts of data must be processed.
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Table 6 — Dependence of the Frequency Spacing Af on Sample Rate f,
and Transform Size n
Transform Sample Rate f, (Hz)
Size -
n 10 5 2 1 4.5 0.25
256 0.0391 0.0195 0.0078 0.003% | 0.00620 0.0010
512 0.0195 0.0C98 0.0039 0.0020 0.6010 0.0005
102« 0.0098 0.0043 0.0020 0.0010 0.0005 0.0002
2048 0.0049 0.0024 0.0010 0.0005 0.0002 4.0001
4086 0.0024 0.0012 | 0.0005 0.0002 0.00061
8192 0.0012 0.0006 0.0002 0.0001
Of the several parameters, the sample length is perhans most critical to the analysis.

For reasons of economy, the sample length should be small. On the other hand. resch-
tion of low-frequency componrents in the spectruin demands a large sample length. Closely
tied to the sample length is the number of spectra that are averaged and therefore the
total lengih of data that enters into tha determination of a single estimate of the roil fre-
quency.

An attempt to confine the oplimum: relationship among these three parameters is
shown in Tables 7 and 8, which present a part of the results of a parametric analysis.
Table 7 shows the results of averaging m spectra each computed from T seconds of data.
Shown is the mean f‘; of the roll-frequency estimates thus determined, the sample standard
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Table 7 — Dependence of the Mean ‘1':;, and the Standard
Deviation S, of the Roll-Frequency Estimates on the Numberm

of Spectra Averaged*

Number of N 172
Average (mT m (é’) ‘;I'") S";; )
Spectra sec) z (Hz (Hz

144 100 1 0.0730 | 0.0071 0.0071
72 200 2 | 0.0732 6.0046 0.0050
36 400 4 0.0735 0.0033 0.0036
18 800 8 | 0.0731 0.0016 0.0025

9 1600 16 | 0.0731 0.0012 0.0018
6 2400 | 24 0.0730 0.0011 0.0014

*Sampie length T = 100 sec.

TJable 8 — Dependence of the mean

f¢ and the Standard Deviation S, of

the Roll-Frequency Estimates on the
Sample Length T*

T m f, . 4 S, &
(sec) (Hz) (Ez)
2400 1 0.0723 0.0017
1200 2 0.0729 0.0018

800 3 0.0725 0.0018
€00 4 0.0734 0.0016
48¢C 5 0.0732 0.0016
400 6 0.0725 0.0017
300 8 0.0728 0.0022

240 10 0.0724 0.0014
200 12 0.0730 .0017
169 15 0.0729 0.0013
120 20 0.0728 0.0016
100 24 €.0730 0.0011
80 30 0.0732 0.0015
60 40 0.0734 0.0014
50 48 0.0732 0.0017
40 60 0.0741 0.0012
30 80 0.0737 0.0015

*Total data length mT = 2400 sec.
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deviation S, . and the sample stzndard desiation with no averaging, S;, reduced by a factor
m1"2 The latter assumes that S; is the s.andard deviation of the Yopulation sc that S;m™1/
gives the theoretical deviation of the sample mean of the roll-frequency estimates themselves,
the mean in this case bring the roll-frequency estim te f‘, determined from an average of m

spectra.

[ ]

A logical question to ask at this pomnt is whether the reducticn so achieved results from
the averaging or froin the increased amount of data mT that entered into the determination
of a single estimate of tne roll frequency. T investigate this the total length m7T of data
was fixed while the sample length T and the number m of spectra averaged wzre varied.
From Table 8 the deviation is seen to varv little, which suggests thati the controlling parame-
ter is the amount of data that enters in®  the determination of a single estimate of the roll
frequency. The results of a series of such measurements for a variety of data lengths mT
are shown in Fig. 13. where the mean deviation £, is plotred as a function of the total data
length mT. The equation fitted to the data, applicabie over the range 30 < T, is seen to be
of the same form as that for the reduction in the deviation of the sample mean. It 5 neces-
sary to restrict the range of T since for T <{ 30 sec there is insufficient resolution for the
measurement accuracy desired.
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Fig. 13 — Mean standzrd deviztion of roll-frequency
estimates {or different sampie fengihs vs total ‘ength
of data per estimate

On examining Table 8 more closely one notices s global minimum in the deviztion for
a sample length T of 100 sec. In fact, this minimum was in evidence at other values of
mT, which ‘suggests that, given a length of data, the optimum processing requires that the
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record be subdivided into 100-sec samples without regard to the number m ¢f spectra 10
be averaged. The reason for this is to be found oy examining the autocorrelatioa function
for the roll history, Fig. 1. Immediately obvious is the clmost total decorrelation for a lag
of 100 sec. Tor a sample length less than this the samples would not be independent, in
which case the reduction in the variance that results from averaging a given number of
spectra would not be expected to be as great. Tahing a sample length equal 1o the decor-
relation time is in some respects equivalent to matched filtaring or 10 enhancement of the
signal-to-noise ratio by coherent integration.

The equivalence to matched filtering can be appreciated by considering that the decor-
relation time is approximately the reciprocal of the resonant bandwidth. To choose a rec-
tangular data window with a length equal to the decorrelation time is to choose a spectral
window with a bandwidth comparable to the handwidth of the resonant pezk. Such 2
matching of the functions being cross correlated (the convolution of even functions} as 2
consequence of transforming should result in maximum response of the “filter™ at the
frequency of resonance. If some weighting other than rectangular were used, %&iﬁg 10
spectral windows with larger bandwidths, the truncation length would have 1o increase to
maintain bandwidth equality.

The equivalence to coherent integration can be understood by considering that, because
of the coherence of the sign2l, signal energy builds up in the cuiput of the {iiter while the
noise energy, through destructive interference, remains at about the same level. As we
include more and more cycles of ihe coherent signal, the peak :n the spectrum comrespond-
ing to the center frequency of the osciilations grows higher and narrower. When the sam-
ple length exceeds the coherence lentih, the improvement ceases, and the single peak may
split into multiple peaks, as seen in the closely spaced peaks in the spectrum of Fig. 14.
obtained from Z00 sec of data. The two peaks of almost equal amplitude may represent
two frequency components present simultaneously or the frequencies of adizcent groups
of oscillations. In the former case, a smaller sampie length will result in less resolution—
as shown in the spectrum of Fig. 15, obtained from 100 sec of data—thereby sffeciivdd
averaging the two spectral lines and stnultanecusly increasing the number of specira ‘aﬁa-
ble for averaging. In the other case, where the two peaks represent the freguencies of
adjacent groups of osciliations, halving the sample length could result in measuring each
peak separately, with the result that both would be accounted for and iwice as many spec-
tra would be available for averaging.

It is interesting to note that the decorrelation time of 100 sec, which spans aboutl
seven cycles of the roll history, appezrs to correlaie with the coherence lengih of th
quency component ir the sea that is driving the ship in the roll plane. Meas
Crombie ot al. [41] of high-frequency groundwave backscatier from the sea
ence lengths of 3.5 to 9.4 cycles for waves with a perio€ egual to that of the =up’s

Since ship roil histories are signailike in character, spectral windows find use prinanly
in reducing errors in the measurement resulting from ieaks<e *hrough their sidelobes, An
interesting problem arises in the spectral analysis of ship roli histories where we are inter.
ested in the frequency of a strong spectrail line near f = 0. For small sampie lengths, leak-
age from the negative-frequency image of the spectral pezk can introduce significant error
in estimating the frequency of the peak. Aspects of this problem are treated on pp. (35 - 38)
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and i Appendix B. The problem 1is minimized here since an optimum sample length equal
to the decorrelation time of the roll record, chosen for other reasons, places the sample
length in a regime (i.e., T/Ty > 6, see Appendix B) where the error (Fig. A2 is less than 1%.
For the smaller sample lengths in Table 8, however, the behavior depicted by Figs. A2

and A3 explains the source of some of the scatter (larger deviation) in the measurements
since for those data the truncation length was fixed while the phase was allowed to vary
randomly. This also explains why the deviation in Table 8 oscillates with sample length
for the smaller sample lengths.

The last factor to be considered that affects the processing of the data is the method
a1} averazing. Do we average normalized ot unnormalized power spectra, contiguous or
nonerontiguous samples? There are reasons that suggest that each technique has merit.

For vxample, we might suppose from an examination of a roll history that the largest
oscillations are large because they are closer in frequency to the natural roll frequency

we are endeavoring to measure, as suggested by Jossers [2] and Williams [8], and that
such oscillations should receive greater weight in the averaging process. This will be the
case if we average power spectra. On the other hand, if we average normalized power
spectra (normalized to the total power in the spectrum), we give equal weight to each
member of the ensemble over which the average is being taken. This is to be preferred

if the amplitude of the oscillations is not a measure of their proximity to resonance. A
comparison of the two methods of averaging is summarized in Table 9, where the sample
standard deviation of the roll-frequency estimates from averaging normalized power spectra.
S1 is uniformly smaller than the sample standard deviation from averaging power spectra, S
and where S;m"1/2 gives the theoretical reduction in the standard deviation that results
from averaging roil-frequency estimates for a population having the standard deviation Sy.
This suggests that the larger oscillations in the roll history do not signify proximity to
re;caance, as has been supposed, but have some other cause, such as coherence of the
wave train driving the ship in roll.

Table 9 — Dependence of the Standard Deviation
S, of the Roll-Frequency Estimates on the Method
of Averaging*

Number Of 1 2 _112
st 2+ | 8§ m
g;;g;:g: mo ey | (Hz)
144 1 0.0071 0.0071 0.0071
72 2 0.0046 0.0047 0.0050
36 4 0.0033 0.0035 0.0036
18 8 0.0016 0.0021 0.0025
9 16 0.0012 0.0014 0.0018
6 24 0.0011 0.0015 0.0014

*Sample length T = 160 sec.
1Values for 8! from averaging normalized power spectra,
$Values for gﬁ from averaging power spectra.
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The consideration of averaging spectra computed from contiguous or nencontiguous
segments of the roll history arose as the result of processing a 4-hr data tape from the
USS Providence (CLG-6) recorded February 14, 1972. Conditions were such that the ship
was driven well off resonance (at about 0.1000 Hz compared to a resonant frequency of
0.0730 Hz) for a period of about 20 min. Averaging spectra from contiguous segments
of the roll history gave rise to some estimates of the roll frequency that were obviously
too high., Moreover, the bad estimate persisted in spite of an increase in the number m
of spectra averaged. The occurrence of such extended periods of rolling far from resonance
has been noted.t To avoid obtaining a bad estimate of the roll frequency under such con-
ditions we can separate our measurements by a time interval large enough to span the inter-
val of bad data. This was done for the data in question, where the interval between mea-
surements was 240/m min. For m = 8 the interval between measurements was 30 min,
which means that one bad measurement was averaged with seven other measurements—a
procedure that effectively discriminated against such an abnormality in the record.

The reason for the occurrence of such anomalies is not clear. The discussion of bias
on pp. 35 - 38 relating to a shift in the frequency of the resonant peak resulting from the
steepness of the wave-slope spectrum in the vicinity of resonance for low wind-speeds may
be pertinent. If, for example, the local winds were below about 15 m/sec, giving rise to
a wave-slope spectrum with a peak substantially higher in frequency than the roll-resonant
frequency, and if the swell were unidirectional so that when heading into or away from the
swell the ship wzre driven in roll by something approaching a Pierson-Moskowitz wave-slope
spectrum |lo] for low windspeeds, such a condition could obtain. Unfortunately, not
enough information about the test conditions was available for making such a judgment.
Two pieces of information are available, however, that support the plausibility of the argu-
ment above. Motion pictures of the sea taken in the operating area on the day for which
the roll history is available show that the winds were very light, as indicated in Table 5,
and show well-defined swell that may indeed have been unidirectional. A discrepancy
between the times of observation in the table and the times recorded with the roll history
would not allow corrclation of the behavior with the angle between the ship’s heading
and the swel: direction. A correlation between the occurrence of the high estimates of
the roll frequency and the ship’s heading did reveal, however, that the high estimates
occurred on headings about 180 degrees apart, or on opposite sides of the box pattern
being executed. Similar behavior was noted by Norrby and Engvall [13], who indicated
that, when the vessel was sailing against the waves, the rolling and pitching were coupled,
rendering the roll period small.

Sampling Distribution of Roll-Frequency Estimates

We have already seen (pp. 25 - 28) that the power-spectral estimates for white noise
are distributed as chi-squared variates with two degrees of freedom and that averaging m
such variates results in the average spectral estimates being distriouted as chi-squared with
2 m degrees of freedom. We saw also that extension of these results could be made to
an arbitrary stochastic process providing that the sample length was large enough to make
the width of the spectral window small compared to the structure of the power spectrum
of the process or that the power spectrum of the process was smooth relative to the spec-
tral window. These assumptions were made on pp. 30 - 35 in deriving for a known power

tA.E. Baitis, Naval Ship Research and Development Center, Bethesda, Md., private communcation, 1974.
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spectrum the probability density function for the estimates of the resonant frequency given
a finite number m of spectra from the ensemble so that the independent spectral estimates
were distributed as chi squared with 2 m degrees of freedom. We saw there that the form
of the pr. bability distribution in the absence of bias (due to leakage through the sidelobes
of the spectral window introduced by the finiteness of the sample length) was Gaussian.

It was noted also that, although the probability density function for the estimate of the
resonant frequency was dependent on the shape of the power spectrum of the process,
only the spectrum in the vicinity of resonance contributed significantly to the probability.
Hence, aven for the case of two filters in tandem, one having as a transfer function the
square root of the wave-slope spectrum for a Pierson-Moskowitz sea and the other having
the transfer function for the ship in the roll plane, the probability density function for
the estimates of the resonant frequency was Gaussian.

The result of processing one 4-hr roll history for the USS Providence are shown
i the form of cummulative distribution functions plotted on normal probability paper.
In Figs. 16 through 20 T is the sample length (seconds) from which a single sample
spectrum was calculated and m is the number of sample spectra averaged to give a single
estimate of the roll frequency plotted on these curves. Three methods of averaging the
m spectra were used. In methods 1 and 2 normalized and unnormalized power spectra,
respectively, were averaged; in both cases the spectra were computed from contiguous
segments of the roll history. In method 7 normalized power spactra computed from non-
contiguous segments of the roll history were averaged.

Figure 16 shows the cumulative distribution function for the global maxima from 144
individual power spectra, each computed from 100 sec of data. The sampling distribution
in the absence of averaging is decidedly not Gaussian. The reduction in the variance and
the tendency to normality with averaging are shown in Fig. 17, where normalized spectra
from noncontiguous segments of the record were averaged. Figures 18 and 19 are included
to show graphically the comparison between averaginn ~ -normalized and normalized power
spectra, in these two cases obtained from contiguous se,.ments of the record. If the ampli-
tude of the roll were a measure of the proximity to resonance, then we should have expected
to see the smaller va.iance in Fig. 18, where the greater power in the larger oscillaticns near
resonance would dominate in the averaging. However, this is seen not to be the case. Figure
20 is the sampling distribution for 12 hr of data with the measurements separated by 30 min.

It should be noted that the standard deviations are larger for the sampling distributions
determined from actual data than those predicted on pp. 27 - 31. The relationship between
the standard deviation for the fractional error € and that for the estimated roll frequency

f¢ can be shown to be

Gf¢(m) = f¢oe(m)-
For a natural roll frequency [, of 0.0730 Hz and a standard deviation g.{m) for the frac-
tional error for m = 8 equal to 0.0095, the standard deviation o7 _(m) for the roll-frequency

estimate would be 0,0007 Hz. Figure 20 shows the standard deviation for m = 8 to be
0.0025 Hz.
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This discrepancy is not surprising since in our earlier discussion on pp. 27 - 31 we assumed

a roll-damy.ing coefficient of 0.032 and assumed that the spectrum of the driving force dia

not alter the bandwidth of the resonant peak, whereas in practice neither of these conditions

may have obtained. There are several possible causes of this vaiiability: a differing doppler
shift in the spectrum of the driving force for each of the eight courses on which the ship
steamed; nonstationarity of the sea over the period during which the data was gathered;
underestimation of the roll-damping coefficient, which would have the effect of reducing
the bandwid.h of the resonant peak in the power spectrum assumed in the derivation and
therefore the variance of the roli-frequency estimates; and broadening of the resonant peak
at sea resulting from the steepness in the spectrum of the driving force in the vicinity of
resonance causing an increase in the variance of the sampling distribution.

Comparison of the estimates of the natural roll frequency in Fig. 20 with the value
obtained from inclining experiments in still water shows a close correlation. The natural
roll period from inclining experiments [42] is found to be 13 to 14 sec (frequency 0.0714
to 0.0769 Hz), whereas the mean of the estimates of the natural roll frequency in Fig. 20
is 0.0721 Hz; this shows that the results of measurements made in a confused sea are in
good agreement with those made in still water. In both cases the spread in the values is
comparable, but it ap,iears that measurement of the natural roll frequency by spectral
analysis of the roll history, as described in this study, has the potential for significantly
improving the accuracy of such measurements.

The method that has been employed until now for ships of the U.S. Navy consists
of sallying the ship by hauling up on one side of the ship at dockside with a crane in
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synchronism with the expected natural roll frequency until the oscillations are built up to
@ measurable level. Several observers with stopwatches then time the decaying oscillations.
Not only is measurement error significant with this method but the tests are often made
while the ship is in the yard completing an overhaul and not in its normal operating con-
dition. A test that could be made with the ship fullv loaded and in operating condition
at sea would offer distinct advantages. The test could be as siuple as recording the roll
history while the ship is at sea for later processing ashore. The equipment required would
therefore be minimal. Since time is likely uot to be urgent for such an application, the
large amount of data that could be gathered and processed could lead to very accurate
measurements. Processing of the same 12 hr of data for the USS Providence as shown in
Fig. 20 but for m = 25 (averaging thirty-six 100-sec sample spectra spaced 20 min apart)
so that each measurement represents 1 hr of data yields a mean value for the estimate of
the natural roll frequency of 0.0725 Hz with a standard deviation ¢f 0.0008 Hz.

Correlation of Rol] Frequency With Ship Size

Figures 21 through 24 show the roll frequency for 13 ships plotted as a function of
overall length, beam at the waterline, maximum navigational draft, and full-load displace-
ment. To assess the degree of correlation with each of these parameters a least-squares
regression line was fitted to the data and the rms error was computed.
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Fig. 21 — Correlation of roll frequency with
ship length {1 ft = 0,.3048 m)
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The algorithm for selecting the roll frequency for each of the 13 ships made use of
no a priori knowledge about the size of the vessel or its probable roll frequency but
assumed cniy that the roll frequency lay in the band of frequencies from 0.0350 to
0.1250 Hz, which spans the range of roll frequencies from large aircraft carriers to small
destroyers.

Interestingly, the best correlation of the natural roll frequency is with the length of
the vessel, and not with the beam or draft, which we would suppose to be more strongly
correlated with the radius of gyration, the metacentric height, and the righting arm. The
dependence of the natural roll frequency on these parameters can be seen by considering
the case of unresisted roll in still water. For these conditions Eq. (1) reduces to the fol-
lowing simple form:

d2p o

—_—F
W,

; p=0. (66)

From first principles, if it is assumed that the axis of roll passes through the center of
gravity G. the equation of motjon may be wriiten
d2
=fiv=0 (67)
dt?

where [ is the mass moment of inertia about the roll axis through the center of gravity
and M is the righting moment. The moment of inertia may be written

Ak?
==

68
2 (68)
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where A is ‘Ye displacement of the vessel, k is the radius of gyration of the mass of the ship
about the roll axis, and g is the acceleration due to gravity. From Fig. B3 in Appendix B,
we can see that for small angles of inclination the righting moment may be written

M= AGZ

B

AGM sin 7
= AGM ¢ (69)

where GZ is the righting arm and GM is the metacentric height. Substitution of Egs. (68)
and (69) into Eq. (67) gives

de? k2 ’

A comparison of Egs. (66) and (70) shows that the radian frequency for unresisted roll in
still water is given in terms of the parameters of static stability as
w? = gGM
s —-—kz .

Making use of the relation w, = 2=/, and the expression for the natural roll frequency in
terms of the frequency of unresisted rcll in still water, Eq. (3), we obtain
@_)112

=2 -k (71)
FA

The close correlation between the natural roll frequency and the length, which appears
nowhere in the abov- equations, is probably attributable to the existence of an “aspect™
ratio among the size parameters of length, beam, draft, and displacement. A simiiar corre-
lation for the still-water roll period for British warshirs was noted by Williams [8]. Assum-
ing similarity of form (geometrical) and weight distribution, he gave the empirical relation as

T, = ¢ 172 {(72)

where T, is the natural period of roll and ¢ is any linear dimension (e.g., length, bear, or
drait). The symbol < indicates proportionality. Correlation with displacement A was given
as

T, = Al (73)

It is interesting to note that the correlation due to Williams [8] is not linear with linear
dimension; the natural roll period varies as the square root of the linear dimension. The cor-
relations shown in Figs. 21 through 24 suffer from a lack of data for larger ships, the USS
John F. Kennedy being well removed in size from all the others for which data is plotted.

If data for ships intermediate in size between the USS Providence and the USS John F.
Kennedy were plotted, they might be expected tc fall below the least-squares regression
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line in Fig. 21, in which case Wilhams™ [8] result would appear to apply. It is also inter-
esting to observe that the data for the USS Thomaston (LSD-28) and the USS Coronedo
(LPD-11) amphibious ships differing in geomerrical form from the others, which are ships
of the line, fall close to the regression line in Figs. 21 and 23: this indicates close correla-
tion of their natural roll periods with length and draft. Figures 22 and 24 indicate that the
data for these same two ships may well be biasing the correlation in favor of a linear rela-
tionship since these ships fall in the middle of the range of beam and displacement and

the data lies above the regression line.

CONCLUSIONS AND RECOMMENDATIONS
Conclusions

The op*imum processing of a finite length of roll history (optimum in the sense of
mirimum variance in the estimate of the naturzl roli frequency) consists of (a) partition-
ing the record into m segments T seconds lcng, T being the deccrrelation time of the roll
history: (b) weighting the data with a rectangular data window for optimum bandwidth
of the spectral window: (¢} adding zeros i0 each segment of the weighted data before
transforming to achieve the desired fineness in frequency; (d) computing the squared modu-
lus of the Fourjer transform of the weighted data with zeros added: () normalizing the
resulling spectrum to unity iotzl power; {{} averaging the m normalized sample power
spectra to obtain a smoothed estimate of the roll spectrum: (g} determining the frequency
of the global maximum of the roll spectrum; (h} correcting this estimate of the resonant
frequency for the bias iniroduced by the steepness of the driving-force spectrum in the
vicinity of resonance if this information is available: and (i} computing the estimate of
the natural roll frequency from a deterministic relation involving the estimated resonant
frequency and the coefficient of roll damping if the latter is large encugh 1o necessitate
such a correction.

Where the amount of data is not so limited and there is the opportunity for designing
the experiment, the optimum procedure is to average sample spectra computed from non-
contiguous portions of the roll history separated by 30 min or more and representing a
diversity of ship headings.

Although it is true that a ship, which is a narrowband resonent system in the roll
plane, is not likely to be driven to large angles of roll at frequencies far from resonance,
it is not trve that the size of the oscillations is necessarily a measure of proximity to
resonance. This was discovered by a comparison of averaging techniques. It was argued
that if large-amplitude rolling obtained by virtue of proximity to resonance, then the
heavier weighting given 1o spectra from such portions of the record by averaging unnor-
malized power spectra would lead to 2 smaller variance in the measurement. This was
not the case, but averaging normalized power spectra (thereby giving equal weight to each
portion of the roll record regardless of the ampiitude of the oscillations) led to the smaller
variance.

The probability distribution for the estimates of the natural roll frequency determined

by the optimum processing scheme described above was derived and found to be Gaussian.
This was confirmed by measurements of 12 hr of roll history from the USS Providence.
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in the North Atlantic Ocean. If might prove inleresting to derive empirically the means
and standard deviations of the speciral estimates for the wave-height records from these
two weather stations and to atlempt to identify trends (eg., daily, weekly, monthly, quar-
terly, and yearly).

The results of such a study might indicate how the estimate >f the naiura] roll fre-
quency might be corrected for bias due io the steepness in the spectrum of the Iriving
force in the vicinity of resonance for cases of low windspeed.

An assumption made on pp. 15 - 16 to render the mathematics more fractable was that the
motion of the ship through the sea would not aiter zppreciably the spectrum of ihe Jdriving
force. This assumption obviated the need for a rather tedious transformation to an “encoun-
ter” spectrum. Neither this ror the assumptlion of a freguency-indeper. lent sprecding func-
t‘on alsc made on p. 14 should affect the smoothness of the spectrum driving the ship in
roll. A more rigorous rendering of the mathemaths in these iwo cases would pe useful
in confirming the accuracy of the simpler treatment considered here.

Another area in which research might be fruitful s an extension of the spectral anahy sis
techniques, applied here to ship roil histories, to ship radar<rosssection histories since the
correlation of the natural roll frequency with ship-size parameters suggests that the natural
roll frequency might serve to classify a ship target as 10 size. A modest effort could be
made by a computer simulation of the radarcrosssection history using as inputs {0 the
program the appropriate radar-cross-section patierns for the ship and actual yaw, roli, and
pitch histories. Application of the fechnique described above {o the simulsted radarcross-
section histories and cimulfaneously to the roli histories should provide a measure of how
successfully the natural roll frequency can be exiracted from radar data.
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Appendix A

ERROR IN ESTIMATING THE FREQUENCY OF A
TRUNCATED SINUSOID

The problem of derermining the frequency of a severely truncated sinusoid occurs
quite often in the case of geophysical phenomena where the periods may be so long as
to preclude observation of a number of cycles. The effect on the Fourier transform of
severely truncating a sinusoid is to shift the frequency of the spectral maximum, an effect
observed by Toman.t The explanation of this effect was provided by Jackson¥ and is
reviewed here to help explain an oscillation in the variance of the roll-frequency estimator
for short sample lengths.

The behavior of the error can be understood by considering the truncated sinusoid
shown in Fig. Ala, where T is the period of the sinusoid, 7 is the delay from the start
of the sinusoid to the first positive peak, and T is the truncation length of the sinusoid.
The function s(¢) can be written

P s(t) = rect {:;ILZ—)-] cos (i—::t + so) (A1)

where the phase angle ¢ = 277/T; and where rect (¢} = 1 for |t] < 1/2 and is zero other-
wice. By Fourier transformation we obtain the spectrum

To . ) ‘ .
S(e,xp) = 5 aein(l + el [sinc(Z + €)ae (M + ¢) + sinc aeeiTa ‘F’)] (A2)

where a = T[Ty, € = (f - fo)!fy, and fy = 1/Ty. The sinc function is given by sinc(x) =
(sin mx)/nx. The notation for the spectrum S(e,a,p) differs here from that used in the
body of the dissertation, the meaning here being that the spectrum is a function of all
three parameters shown.

Figure Alb, a plot of the magnitude of the spectrum for @ = 2 and ¢ = 0, shows
the sinc-function spectral window replicated at ;. It can readily be appreciated that add-
ing the sidelobe from the spectral window centered at f; to the mainlobe at -fy will result
in a shift in the location of the resulting peak where the slope of the sidelobe at -f; is
not zero. A similar argument holds of course for the peak at f,.

With the formulation of Eq. (A2) we can plot the fractional error € in the position

! of the peak of the spectrum as the phase v and the normalized truncaticu length « are
varied. Figures A2 nd A3 show this dependence.

1K. Toman, *‘The Spectral Shift of Truncated Sinusoids,” J. Geophys. Res. 70, 1749 (1965).
#P.L. Jackson, “Truncation and Phase Relationships of Sinusoids,” J. Geophys. Res. 72, 1400 (1967).
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Fig. A1 — Construction showing (a) phase-shifted truncated tinusoid and (b) replication of
spectral window at frequency of sinasoid

ERAOR (PERCENT?

Fig. A2 — Positive error in estimate of the frequency of a truncated sinusoid
{mean retained)

Some aspects of the behavior of the error merit comment. First, the decreasing enve-
lope of the error as the truncation length increases suggests that measurement error from
this cause can be minimized by using larger sample lengths, Second, for a given truncation
length, as the phase is varied the error oscillates between positive and negative limits, which
are about equal. In a random sampling of pieces of a sinusoid of the same length, the mag-
nitude of this error would be felt in the variance of the measurement. Third, since this
error is incurred as a result of the presence of sideiobes in the spectral window, the error
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ERROR  (PERCENT)

Fig. A3— Negative erTor in estimate of the frequency of a truncated sinusoid
{mean retained}

could be reduced by choosing « spectral windnaw with lower sidelobes. If the smaller band-
width of the sinc-function spectral window cannot be compromised, it might then be advis-
able to choose, as nearly as vne can, the phase and truncation length so as to minimize the
error, for example,

6
I
N

although the algorithm for such 2 computation would be more romplex. Fourth, since the
error in this very simple model (i.e.. a process spectrum consisting of a single spectral line
and its image at negative frequency} arises from lealage due to the negative-frequency image,
we could avoid the problem altogether by utilizing the analytic signal of Gabor. ¥

Since it is customary in spectral analysis to remove the mean from ¢ sample of data
before obtaining the spectrum, it would be of interest 1o know the effect on the error dis-

cussed above of removing the mean value of the sample before transforming. Re: .oval of
the sample mean leads to the spectrum

Steap) = S(e,08) - 5Tpx sinA1 + e)ae~iT(1 + €10 (A3)

*D. Gabor, “Th.ory of Communications,” 4. ]EE (London} 93 {3), 429-457 {1946).
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where the prime on the spectrum indicates that the mean has heen removed and 5 is the
mean of the truncated sinusoid, given by

-1 ‘ .
$= o [sin(27a + @) - sin @]. (A4)

The fractional error in this case is shown plotted in Figs. A4 and A5.

EPAOR  (PERCENT)

Fig. A4 — Positive error in estimate of the frequency of a truncated sinusoid
{mean removed)
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Fig. A5 — Negative error in estimate of the frequency of a truncated sinusoid
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{mean removed)
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Appendix B
DEFINITION OF TERMS RELEVANT TO SHIP STABILITY

Naval Architecture

The motion of a ship in a seaway is characterized by six degrees of freedom: three
translational (surge, sway, and heave) and three rotational (roll, pitch, and yaw). The
relationship between the various component motions is shown in Fig. Bl. Roll is the
oscillatory motion of the ship in the sea, whereas heel is a temporary transverse inclina-
tion resulting from a high-speed turn or the influence of a strong wind. List is a more
or less permanent condition of transverse inclination, such as might arise from uneven
loading. Synchronous rolling, or the condition of synchronism. obtains when the apparent
frequency of the swell (i.e., the frequency of that component normal to the roll axis) is
very near the natural roll, or resonant, frequency of the ship. Resisted or unresisted roll-
ing refers to the presence or absence of damping. Bilge keels are added to increase roll
damping. They are longitudinal finlike structures protruding from the turn-of-the-h .,
or the point of maximum curvature of the underwater portion of the hull.

>

H — P WAV
1

-
-

[ad

R0E

Fig. B1 — Relationship among the components
of ship motion

Figure B2 shows the midship on, a plane normal to the longitudinal centerline
plane and waterlines, the waterlires 2ing planes (or their iniersection with the hull) par-
alle] to the base plane at the top of the flat keel. Shown in the figure are several angles
of heei. For each angle of heel, or inclination, the shape of the displaced volume is dif-
ferent. The geometric center of the displaced volume is the center of buoyancy B through
which the hydrostatic pressure on the immersed surface (equal to the weight of water
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Fig. B2 — Transverse section showing parameters of static stability

displaced) acts vertically upward. The successive positions of the center of buoyancy for
different angles of inclination describe a curve known as the locus of the center of buoy-
ancy. For each point of this curve a center of curvature, or metacenter m, may be found.
The locus of these metacenters is called the metacentric. For small angles of inclination,
usually less than about 10 degrees, there is little change in the position of these centers of
curvature. Hence, for small angles of inclination, these centers are assumed to be fixed in
a position M called the metacenter.

Oceanography

The ierm “sea,” as used by oceanographers, refers to waves generated or sustained by
winds within their fetch, or distance over which the wind is interacting with the sea, whereas
“swell” refers to waves that have traveled out of the area in which they were generated.
Beam seas are wind-generated waves whose direction is normali to the roll axis, whereas a
confused sea is a rough sea (waves 1.5 to 2.5 m (5 to 8 ft) high produced by winds of
about 8 m/sec) where the direction and period of the sea and/or swell are indeterminate.
A fully developed sea is one that has reached equilibrium after a steady wind has Elown
for a sufficiently long time nver a sufficiently long fetch. Gravity waves are waves whose
celerity (velocity of propagation) is controlled primarily by gravity, as oppused to capillary
waves, whose celerity is controlled by the surface tension of the water in which they are
traveling. Water waves of length greater than about 51 mm (2 in.) are considered gravity
waves. A regular wave is one with a sinusoidal profile as opposed to a trochoidsl profile.
The wave normal is the local perpendicular to the wave surface, and the wave-normal angle
is the angle between the wave normal and the local vertical. The term “encounter” refers
to the relative motion between the sea and a ship under way in the sea. Hence the fre-
quency of encounter is the frequency of the sea as viewed from a ship moving through the
sea, and rot the frequency of the sea relative to an earth-centered, or absolute, coordinate
system. Figure B3 shows a typical directional frequency spectrum.




|
W

[T

WILSON G. REID

Fig. B3 — Typical directional ses spectrum
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